
ELM327

Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

OBD to RS232 Interpreter

Almost all new automobiles produced today are
required, by law, to provide an interface from which
test equipment can obtain diagnostic information.
The data transfer on these interfaces follow several
standards, none of which are directly compatible
with PCs or PDAs. The ELM327 is designed to act
as a bridge between these On-Board Diagnostics
(OBD) ports and standard PC RS232 ports.

The ELM327 builds on improved versions of our
proven ELM320, ELM322, and ELM323 interfaces
by adding four CAN protocols to them. The result is
an IC that can automatically sense and convert the
nine most common protocols in use today. There are
a number of other improvements as well - a high
speed RS232 option with data buffering, battery
voltage monitoring, and the ability to remember the
last used protocol, to name only a few.

The ELM327 requires few external components
to make a fully functioning circuit. The following
pages discuss the interface details, and show how to
use the IC to ‘talk’ to your vehicle, before concluding
with two typical schematics to get you started in the
Example Applications section.

• Supports 9 OBDII protocols

• Automatically searches for a protocol

• Fully configurable with AT commands

• High and Medium speed RS232

• Voltage input for battery monitoring

• Low power CMOS design

• Diagnostic trouble code readers

• Automotive scan tools

• Teaching aids

Description

Applications

Block Diagram

Features

ELM327DSB 1 of 43

9 10XT1 XT2

18

17

Command
and

Protocol
Interpreter

6

RS232Tx

RS232Rx

LFmode

4.00 MHz

RS232
Interface

2

7

122423 2221

ISO 15765-4
CAN

ISO 9141-2
ISO 14230-4

SAE J1850
PWM & VPW

111343 14

A/D
Converter

15

16

Baud Rate

25 28…

5Memory

status LEDs OBD interfaces

1

Busy

MCLR
Vmeasure

RTS

Connection Diagram
PDIP and SOIC

(top view)

OBD Tx LED

OBD Rx LED

RS232 Tx LED

RS232 Rx LED

CAN Rx

CAN Tx

ISO L

ISO K

VDD

RS232 Rx

RS232 Tx

Busy

RTS

MCLR

Memory

Baud Rate

LFmode

J1850 Volts

XT1

XT2

VSS

ISO In

PWM In

J1850 Bus+

VPW In

J1850 Bus-

Vmeasure

VSS

ELM327

Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Pin Descriptions

2 of 43

All rights reserved. Copyright 2005, 2006 Elm Electronics Inc.
Every effort is made to verify the accuracy of information provided in this document, but no representation or warranty can be
given and no liability assumed by Elm Electronics with respect to the accuracy and/or use of any products or information
described in this document. Elm Electronics will not be responsible for any patent infringements arising from the use of these
products or information, and does not authorize or warrant the use of any Elm Electronics product in life support devices and/or
systems. Elm Electronics reserves the right to make changes to the device(s) described in this document in order to improve
reliability, function, or design.

MCLR (pin 1)

A logic low applied to this input will reset the IC. If
unused, this pin should be connected to a logic high
(VDD) level.

Vmeasure (pin 2)

This analog input is used to measure a 0 to 5V
signal that is applied to it. Care must be taken to
prevent the voltage from going outside of the supply
levels of the ELM327, or damage may occur. If it is
not used, this pin should be tied to either VDD or VSS.

J1850 Volts (pin 3)

This output can be used to control a voltage supply
for the J1850 Bus+ output. The pin will output a logic
high level when a nominal 8V is required (for J1850
VPW), and will output a low level when 5V is needed
(as for J1850 PWM applications). If this switching
capability is not required for your application, this
output can be left open-circuited.

J1850 Bus+ (pin 4)

This active high output is used to drive the
J1850 Bus+ Line to an active level. Note that this
signal does not have to be used for the Bus- Line (as
was the case for the ELM320), since a separate
J1850 Bus- drive output is provided on pin 14.

Memory (pin 5)

This input controls the default state of the memory
option. If this pin is at a high level during power-up or
reset, the memory function will be enabled by
default. If it is at a low level, then the default will be
to have it disabled. Memory can always be enabled
or disabled with the AT M1 and AT M0 commands
as well.

Baud Rate (pin 6)

This input controls the baud rate of the RS232
interface. If it is at a high level during power-up or

reset, the baud rate will be set to 38400. If at a low
level, the baud rate will be 9600.

LFmode (pin 7)

This input is used to select the default linefeed mode
to be used after a power-up or system reset. If it is at
a high level, then by default messages sent by the
ELM327 will be terminated with both a carriage
return and a linefeed character. If it is at a low level,
lines will be terminated by a carriage return only.
This behaviour can always be modified by issuing an
AT L1 or AT L0 command (see the section on AT
Commands).

VSS (pins 8 and 19)

Circuit common must be connected to these pins.

XT1 (pin 9) and XT2 (pin 10)

A 4.000 MHz oscillator crystal is connected between
these two pins. Loading capacitors as required by
the crystal (typically 27pF each) will also normally be
connected between each of these pins and circuit
common (Vss).

Note that this device has not been configured for
operation with an external oscillator - it expects a
crystal to be connected to these pins. Use of an
external clock source is not recommended.

VPW In (pin 11)

This is the active high input for the J1850 VPW data
signal. When at rest (bus recessive) this pin should
be at a low logic level. This input has Schmitt trigger
waveshaping, so no special amplification is required.

ISO In (pin 12)

This is the active low input for the ISO 9141 and
ISO 14230 data signal. It is derived from the K Line,
and should be at a high logic level when at rest (bus
recessive). No special amplification is required, as
this input has Schmitt trigger waveshaping.

ELM327DSB

Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

ELM327

3 of 43ELM327DSB

Ordering Information

These integrated circuits are 28 pin devices, available in either the 300 mil plastic DIP format or in the 300 mil SOIC
surface mount type of package. To order, add the appropriate suffix to the part number:

300 mil 28 pin Plastic DIP..............................ELM327P 300 mil 28 pin SOIC....................................ELM327SM

PWM In (pin 13)

This is the active low input for the J1850 PWM data
signal. It should normally be at a high level when at
rest (ie. bus recessive). This input has Schmitt
trigger waveshaping, so no special amplification is
required.

J1850 Bus- (pin 14)

This active high output is used to drive the J1850
Bus- Line to an active (dominant) level for J1850
PWM applications. If unused, this output can be left
open-circuited.

RTS (pin 15)

This active low “Request To Send” input can be used
to interrupt processing in order to send a new
command. Normally high, the line is brought low for
attention, and should remain so until the Busy line
(pin 16) indicates that the ELM327 is no longer busy.
This input has Schmitt trigger waveshaping.

Busy (pin 16)

This active high output shows the current state of the
ELM327. If it is at a low level, the processor is ready
to receive ASCII commands and characters, but if it
is at a high level, commands are being processed.

RS232Tx (pin 17)

This is the RS232 data transmit output. The signal
level is compatible with most interface ICs (output is
normally high), and there is sufficient current drive to
allow interfacing using only a PNP transistor, if
desired.

RS232Rx (pin 18)

This is the RS232 receive data input. The signal
level is compatible with most interface ICs (the level

is normally high), but can be used with other
interfaces as well, since the input has Schmitt trigger
waveshaping.

VDD (pin 20)

This pin is the positive supply pin, and should always
be the most positive point in the circuit. Internal
circuitry connected to this pin is used to provide
power on reset of the microprocessor, so an external
reset signal is not required. Refer to the Electrical
Characteristics section for further information.

ISO K (pin 21) and ISO L (pin 22)

These are the active high output signals which are
used to drive the ISO 9141 and ISO 14230 buses to
an active (dominant) level. Many new vehicles do not
require the L Line - if yours does not, you can simply
leave pin 22 open-circuited.

CAN Tx (pin 23) and CAN Rx (pin 24)

These are the two CAN interface signals that must
be connected to a CAN transeiver IC for proper
operation. If you are connecting to an existing CAN
system, the integrity of the entire system might be
jeopardized if a proper interface is not used. See the
Example Applications section for more information.

RS232 Rx LED (pin 25), RS232 Tx LED (pin 26),
OBD Rx LED (pin 27) and OBD Tx LED (pin 28)

These four output pins are normally high, and are
driven to low levels when the ELM327 is transmitting
or receiving data. Current capability is suitable for
directly driving most LEDs through current limiting
resistors, or interfacing to other logic for status
reporting. If unused, these pins should be left open-
circuited.

Pin Descriptions (continued)

Electrical Characteristics

Absolute Maximum Ratings

Storage Temperature....................... -65°C to +150°C

Ambient Temperature with
Power Applied....................................-40°C to +85°C

Voltage on VDD with respect to VSS............ 0 to +7.5V

Voltage on any other pin with
respect to VSS........................... -0.3V to (VDD + 0.3V)

Note:

Stresses beyond those listed here will likely damage
the device. These values are given as a design
guideline only. The ability to operate to these levels
is neither inferred nor recommended.

Notes:

1. This integrated circuit is produced with a Microchip Technology Inc.’s PIC18F248 or PIC18F2480 as the
core embedded microcontroller. For further device specifications, and possibly clarification of those given,
please refer to the appropriate Microchip documentation (available at http://www.microchip.com/).

2. This spec must be met in order to ensure that a correct power on reset occurs. It is quite easily achieved
using most common types of supplies, but may be violated if one uses a slowly varying supply voltage, as
may be obtained through direct connection to solar cells, or some charge pump circuits.

3. Device only. Does not include any load currents.

4. Pins 1, 11, 12, 13, 15 and 18 (only) have internal Schmitt trigger waveshaping circuitry. All other inputs use
standard CMOS circuitry.

5. The typical width of the Busy output pulse while the ELM327 interprets the command, measures the voltage,
scales it and transmits the result of a mid-range measurement at 38400 baud.

4 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

All values are for operation at 25°C and a 5V supply, unless otherwise noted. For further information, refer to note 1 below.

Characteristic Minimum Typical Maximum ConditionsUnits

Supply voltage, VDD 4.5 5.0 5.5 V

VDD rate of rise 0.05 V/ms

Average supply current, IDD 9 mA

Input threshold voltage 1.0 1.3 V

Output low voltage

Output high voltage

current (sink) = 10 mA

current (source) = 10 mA

see note 2

see note 5

see note 3

Schmitt trigger
input thresholds

Brown-out reset voltage 4.07 4.2 4.59 V

rising

falling

A/D conversion time 7 msec

all except Schmitt inputs

V

V

0.3

4.6

V

V

2.9

1.5

see note 4

1.0

4.0

5 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Communicating with the ELM327

The ELM327 relies on a standard RS232 type
serial connection to communicate with the user. When
connecting to the ELM327, ensure that you have
chosen the proper data rate (either 9600 or 38400
baud), with 8 data bits, no parity bit, and 1 stop bit. All
responses from the IC are terminated with a single
carriage return character and, optionally, a linefeed
character - make sure that your software is configured
properly for the “line end” mode that you have chosen.

Properly connected and powered, the ELM327 will
energize the four LED outputs in sequence (as a ‘lamp
test’) and will then send the message:

ELM327 v1.1

>

In addition to identifying the version of this IC,
receiving this string is a good way to confirm that the
computer connections and terminal software settings
are correct. (However, at this point no communications
have taken place with the vehicle, so the state of that
connection is still unknown.) The ‘>’ character
displayed above is the ELM327’s prompt character. It
indicates that the device is in its idle state, ready to
receive characters on the RS232 port.

Characters sent from the computer can either be
intended for the ELM327’s internal use, or for
reformatting and passing on to the vehicle. The
ELM327 can quickly determine where the received
characters are to be directed by analyzing the entire
string once the complete message has been received.
Commands for the ELM327’s internal use will always
begin with the characters ‘AT’ (as is common with
modems), while OBD commands for the vehicle are
only allowed to contain the ASCII codes for
hexadecimal digits (0 to 9 and A to F).

Whether an ‘AT’ type internal command or a hex
string for the OBD bus, all messages to the ELM327
must be terminated with a carriage return character

(hex ‘0D’) before it will be acted upon. The one
exception is when an incomplete string is sent and no
carriage return appears. In this case, an internal timer
will automatically abort the incomplete message after
about 20 seconds, and the ELM327 will print a single
question mark (‘?’) to show that the input was not
understood (and was not acted upon).

Messages that are not understood by the ELM327
(syntax errors) will always be signalled by a single
question mark. These include incomplete messages,
incorrect AT commands, or invalid hexadecimal digit
strings, but are not an indication of whether or not the
message was understood by the vehicle. One must
keep in mind that the ELM327 is a protocol interpreter
that makes no attempt to assess the OBD messages
for validity – it only ensures that an even number of
hex digits were received, combined into bytes, then
sent out the OBD port, and it does not know if the
message sent to the vehicle was in error.

While processing OBD commands, the ELM327
will continually monitor for an RTS input, or an RS232
input. Either one will interrupt the IC, quickly returning
control to the user, and possibly aborting any initiation,
etc. that was in progress. If you desire to interrupt the
ELM327, that’s fine, but for normal orderly data
transfer, users should always wait for the prompt
character (‘>’), or a low level on the Busy output before
beginning to send the next command.

Finally, there are a few convenience items to note.
The ELM327 is not case-sensitive, so ‘ATZ’ is
equivalent to ‘atz’, and to ‘AtZ’. Also, it ignores space
characters and all control characters (tab, linefeed,
etc.) in the input, so they can be inserted anywhere to
improve readability. Another feature is that sending
only a single carriage return character will always
repeat the last command (making it easier to request
updates on dynamic data such as engine rpm).

Overview

The following describes how to use the ELM327 to
obtain information from your vehicle.

We begin by discussing just how to talk to the IC
using a PC, then explain how to change options using
‘AT’ commands, and finally we show how to use the
ELM327 to obtain trouble codes (and reset them). For
the more advanced experimenters, there are also
sections on how to use some of the programmable

features of this product as well.
Using the ELM327 is not as daunting as it first

seems. Many users will never need to issue an ‘AT’
command, adjust timeouts or change the headers. For
most, all that is required is a PC or a PDA with a
terminal program (such as HyperTerminal or ZTerm),
and knowledge of one or two OBD commands, which
we will provide in the following sections…

6 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

AT Commands

AL [Allow Long messages]

The standard OBDII protocols restrict the number
of data bytes in a message to seven, which the
ELM327 normally does as well (for both send and
receive). If AL is selected, the ELM327 will allow long
sends (eight data bytes) and long receives (unlimited
in number). The default is AL off (and NL selected).

BD [perform an OBD Buffer Dump]

All messages sent and received by the ELM327
are stored temporarily in a set of twelve memory
storage locations called the OBD Buffer. Occasionally,
it may be of use to view the contents of this buffer,
perhaps to see why an initiation failed, to see the
header bytes in the last message, or just to learn more
of the structure of OBD messages. You can ask at any
time for the contents of this buffer to be “dumped”
(printed) – when you do, the ELM327 sends a length
byte (representing the number of data bytes) followed
by the contents of all twelve OBD buffer locations.

The length byte represents the actual number of
data bytes received, whether they fit into the OBD
buffer or not. This may be useful when viewing long
data streams (with AT AL), as the number accurately
represents the number of bytes received, mod 256.
Note that only the first twelve bytes received are
stored in the buffer.

Several parameters within the ELM327 can be
adjusted in order to modify its behaviour. These do not
normally have to be changed before attempting to talk
to the vehicle, but occasionally the user may wish to
customize these settings; for example by turning the
character echo off, adjusting a timeout value, or
changing the header bytes. In order to do this, internal
‘AT’ commands must be issued.

Those familiar with PC modems will immediately
recognize AT commands as a standard way in which
modems are internally configured. The ELM327 uses
essentially the same method, always watching the
data sent by the PC, looking for messages that begin
with the character ‘A’ followed by the character ‘T’. If
found, the next characters will be interpreted as
internal configuration or ‘AT’ commands, and will be
executed upon receipt of a terminating carriage return

character. The ELM327 will usually reply with the
characters ‘OK’ on the successful completion of a
command, so the user knows that it has been
executed.

Some of the following commands allow passing
numbers as arguments in order to set the internal
values. These will always be hexadecimal numbers
which must generally be provided in pairs. The
hexadecimal conversion chart in the OBD Commands
section may prove useful if you wish to interpret the
values. Also, one should be aware that for the on/off
types of commands, the second character is the
number 1 or 0, the universal terms for on and off.

The following is a description of all of the AT
commands that are recognized by the current version
of the ELM327. Since there are many, a summary
page is provided after this section.

BI [Bypass the Initialization sequence]

This command should be used with caution. It
allows an OBD protocol to be made active without
requiring any sort of initiation or handshaking to occur.
The initiation process is normally used to validate the
protocol, and without it, results may be difficult to
predict. It should not be used for routine OBD use, and
has only been provided to allow the construction of
ECU simulators and training demonstrators.

CAF0 and CAF1 [CAN Auto Formatting off or on]

These commands determine whether the ELM327
assists you with the formatting of the CAN data that is
sent and received. With CAN Automatic Formatting
enabled (CAF1), the IC will automatically generate
formatting (PCI) bytes for you when sending, and will
remove them when receiving. This means that you can
continue to issue OBD requests (01 00, etc.) as usual,
without regard to these extra bytes that the CAN
diagnostics systems require. With formatting on, the
trailing (unused) data bytes that are received in a
frame will be removed as well, and only the relevant
ones will be shown.

Turning the CAN Automatic Formatting off (CAF0),
will cause the ELM327 to print all of the received data
bytes. No bytes will be hidden from you, and none will
be inserted for you. Similarly, when sending a data
request with formatting off, you must provide all of the

7 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

AT Commands (continued)

required data bytes exactly as they are to be sent –
the ELM327 will not perform any formatting for you
other than to add some trailing 'padding' bytes to
ensure that the required eight data bytes are sent. This
allows operation in systems that do not use PCI bytes
as ISO 15765-4 does.

Occasionally, long (multi-frame) responses are
returned by the vehicle. In order to help you analyze
these, the Auto Formatting mode will extract the total
data length and print it on one line. Following this will
be each segment of the message, with the segment
number (a single hexadecimal digit) shown at the
beginning of the line with a colon (':') as a separator.

You may also see the characters 'FC: ' at the
beginning of a line (if you are experimenting). This
represents a Flow Control message that is sent in
response to a multi-line message. Flow Control
messages are automatically generated by the ELM327
in response to a “First Frame” reply, as long as the
CFC setting is on (it does not matter whether you have
selected the CAF1 or the CAF0 modes).

Another type of message – the RTR (or ‘Remote
Transfer Request’) – will be automatically hidden for
you when in the CAF1 mode, since they contain no
data. When auto formatting is off (CAF0), you will see
the characters 'RTR' printed when a remote transfer
request frame has been received.

Note that turning the display of headers on (with
AT H1) will override the CAF1 formatting of the
received data and all received bytes will be shown as if
in the CAF0 mode (exactly as received). It is only the
printing of the received data that will be affected when
both CAF1 and H1 modes are enabled, though; when
sending data, the PCI byte will still be created for you
and padding bytes will still be added. Auto Formatting
on (CAF1) is the default setting for the ELM327.

CF hhh [set the CAN ID Filter to hhh]

The CAN Filter works in conjunction with the CAN
Mask to determine what information is to be accepted
by the receiver. As each message is received, the
incoming CAN ID bits are compared to the CAN Filter
bits (when the mask bit is a ‘1’). If all of the relevant
bits match, the message will be accepted, and
processed by the ELM327, otherwise it will be
discarded. This three nibble version of the CAN Filter
command makes it a little easier to set filters with 11
bit ID CAN systems. Only the rightmost 11 bits of the
provided nibbles are used, and the most significant bit

is ignored. The data is actually stored as four bytes
internally however, with this command adding leading
zeros for the other bytes. See the CM command(s) for
more details.

CF hh hh hh hh [set the CAN ID Filter to hhhhhhhh]

This command allows all four bytes (actually 29
bits) of the CAN Filter to be set at once. The 3 most
significant bits will always be ignored, and can be
given any value. Note that this command can be used
to enter 11 bit ID filters as well, since they are stored in
the same locations internally (entering AT CF 00 00 0h
hh is exactly the same as entering the shorter AT CF
hhh command).

CFC0 and CFC1 [CAN Flow Control off or on]

The ISO 15765-4 protocol expects a “Flow
Control” message to always be sent in response to a
“First Frame” message. The ELM327 automatically
sends these, without any intervention by the user. If
experimenting with a non-OBD system, it may be
desirable to turn this automatic response off, and the
AT CFC0 command has been provided for that
purpose. The default setting is CFC1 - Flow Controls
on.

Note that during monitoring (AT MA, MR, or MT),
there are never any Flow Controls sent no matter what
the CFC option is set to.

CM hhh [set the CAN ID Mask to hhh]

There can be a great many messages being
transmitted in a CAN system at any one time. In order
to limit what the ELM327 views, there needs to be a
system of filtering out the relevant ones from all the
others. This is accomplished by the filter, which works
in conjunction with the mask. A mask is a group of bits
that show the ELM327 which bits in the filter are
relevant, and which ones can be ignored. A ‘must
match’ condition is signaled by setting a mask bit to '1',
while a 'don't care' is signaled by setting a bit to '0'.
This three digit variation of the CM command is used
to provide mask values for 11 bit ID systems (the most
significant bit is always ignored).

Note that a common storage location is used
internally for the 29 bit and 11 bit masks, so an 11 bit
mask could conceivably be assigned with the next
command (CM hh hh hh hh), should you wish to do the

8 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

AT Commands (continued)

extra typing. The values are right justified, so you
would need to provide five leading zeros followed by
the three mask bytes.

CM hh hh hh hh [set the CAN ID Mask to hhhhhhhh]

This command is used to assign mask values for
29 bit ID systems. See the discussion under the
CM hhh command - it is essentially identical, except
for the length. Note that the three most significant bits
that you provide in the first digit will be ignored.

CP hh [set CAN Priority bits to hh]

This command is used to set the five most
significant bits in a 29 bit CAN ID word (the other 24
bits are set with the AT SH command). Some systems
use several of these bits to assign a priority value to
messages, which is how the command was named.
Any bits provided in excess of the five required will be
ignored, and not stored by the ELM327 (it only uses
the five least significant bits of this byte). The default
value for these priority bits is hex 18.

CS [show the CAN Status]

The CAN protocol requires that statistics be kept
regarding the number of transmit and receive errors
detected. If there should be a significant number of
them, the device can even go off-line in order not to
affect other data on the bus, should there be a
hardware or software fault. The AT CS command lets
you see both the Tx and the Rx error counts. If the
transmitter should be off (count >FF), you will see
‘OFF’ rather than a specific count.

CV dddd [Calibrate the Voltage to dd.dd volts]

The voltage reading that the ELM327 presents for
an AT RV reading can be calibrated with this
command. The argument (‘dddd’) must always be
provided as 4 digits, with no decimal point (it assumes
that a decimal place is between the second and the
third digits).

To use this calibration feature, simply use a meter
with sufficient accuracy to read the actual input
voltage. If, for example, the ELM327 consistently says
the voltage is 12.2V when you measure 11.99 volts,
simply issue AT CV 1199, and the device will

recalibrate itself for the provided voltage (it should then
read 12.0V due to roundoff). If you use a test voltage
that is less than 10 volts, don’t forget to add a leading
zero (that is, 9.02 volts should be entered as AT CV
0902).

D [set all to Defaults]

This command is used to set the options to their
default (or factory) settings, as when power is first
applied. The last stored protocol will be retrieved from
memory, and will become the current setting (possibly
closing other protocols that are active). Any settings
that the user had made for custom headers, filters, or
masks will be restored to their default values, and all
timer settings will also be restored to their defaults.

DP [Describe the current Protocol]

The ELM327 is capable of automatically
determining the appropriate OBD protocol to use for
each vehicle that it is connected to. When the IC
connects to a vehicle, however, it returns only the data
requested, and does not report the protocol found. The
DP command is used to determine the current protocol
that the ELM327 is selected for (even if not
connected). If the automatic option is also selected,
the protocol will show the word "AUTO" before it,
followed by the type. Note that the actual protocol
names are displayed, not the numbers used by the
protocol setting commands.

DPN [Describe the Protocol by Number]

This command is similar to the DP command, but
it returns a number which represents the current
protocol. If the automatic search function is also
enabled, the number will be preceded with the letter
‘A’. The number is the same one that is used with the
set protocol and test protocol commands.

E0 and E1 [Echo off (0) or on(1)]

These commands control whether or not
characters received on the RS232 port are
retransmitted (or echoed) back to the host computer.
To reduce traffic on the RS232 bus, users may wish to
turn echoing off by issuing ATE0. The default is E1
(echo on).

9 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

FC SM h [Flow Control Set Mode to h]

This command sets how the ELM327 responds to
First Frame messages when automatic Flow Control
responses are enabled. The single digit provided can
either be ‘0’ (the default) for fully automatic responses,
‘1’ for completely user defined responses, or ‘2’ for
user defined data bytes in the response. More
complete details and examples can be found in the
Altering Flow Control Messages section.

FC SH hhh [Flow Control Set Header to…]

The header (or more properly ‘CAN ID’) bytes
used for CAN Flow Control response messages can
be set using this command. Only the right-most 11 bits
of those provided will be used - the most significant bit
is always removed. This command currently only
affects Flow Control mode 1.

FC SH hhhhhhhh [Flow Control Set Header to…]

This command is used to set the header (or ‘CAN
ID’) bits for Flow Control responses with 29 bit CAN ID
systems. Since the 8 nibbles define 32 bits, only the
right-most 29 bits of those provided will be used - the
most significant three bits are always removed. This
command currently only affects Flow Control mode 1.

FC SD [1-5 bytes] [Flow Control Set Data to…]

The data bytes that are sent in a CAN Flow
Control message can be set with this command. The
current version of the software allows one to five data
bytes to be defined, with the remainder of the data
bytes in the message being automatically set to the
default CAN filler byte. Data provided with this
command is only used with Flow Control modes 1 and
2.

H0 and H1 [Headers off (0) or on(1)]

These commands control whether or not the
additional (header) bytes of information are shown in
the responses from the vehicle. These are normally
not shown by the ELM327, but can be by issuing the
AT H1 command.

Turning the headers on actually shows more than
just the header bytes - you will see the complete
message as transmitted, including the check-digits,

and PCI bytes. The only exception is that the current
version does not display the CAN data length code
(DLC), the CRC, nor the special J1850 IFR bytes
(which some protocols use to acknowledge receipt of a
message).

I [Identify yourself]

Issuing this command causes the chip to identify
itself, by printing the startup product ID string (currently
“ELM327 v1.1”). Software can use this to determine
exactly which integrated circuit it is talking to, without
having to reset the IC.

IB 10 [set the ISO Baud rate to 10400]

This command restores the ISO 9141-2 and
ISO 14230-4 baud rates to the default value of 10400.

IB 96 [set the ISO Baud rate to 9600]

Several users have requested this command. It is
used to change the baud rate used for the ISO 9141-2
and ISO 14230-4 protocols (numbers 3, 4, and 5) to
9600 baud, while relaxing some of the requirements
for the initiation byte transfers. It may be useful for
experimenting with some vehicles. Normal 10,400
baud operation can be restored at any time by issuing
an IB 10 command.

L0 and L1 [Linefeeds off (0) or on(1)]

This option controls the sending of linefeed
characters after each carriage return character. For
AT L1, linefeeds will be generated after every carriage
return character, and for AT L0, they will be off. Users
will generally wish to have this option on if using a
terminal program, but off if using a custom computer
interface (as the extra characters transmitted will only
serve to slow the communications down). The default
setting is determined by the voltage at pin 7 during
power on (or reset). If the level is high, then linefeeds
on will be the default; otherwise it will be linefeeds off.

M0 and M1 [Memory off (0) or on(1)]

The ELM327 has internal “non-volatile” memory
that is capable of remembering the last protocol used,
even after the power is turned off. This can be

AT Commands (continued)

10 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

AT Commands (continued)

convenient if the IC is often used for one particular
protocol, as that will be the first one attempted when
next powered on. To enable this memory function, it is
necessary to either use an AT command to select the
M1 option, or to have chosen “memory on” as the
default power on mode (by connecting pin 5 of the
ELM327 to a high logic level).

When the memory function is enabled, each time
that the ELM327 finds a valid OBD protocol, that
protocol will be memorized (stored) and will become
the new default. If the memory function is not enabled,
protocols found during a session will not be
memorized, and the ELM327 will always start at power
up using the same (last saved) protocol.

If the ELM327 is to be used in an environment
where the protocol is constantly changing, it would
likely be best to turn the memory function off, and
issue an AT SP 0 command once. The SP 0 command
tells the ELM327 to always start in an 'Automatic'
protocol search mode, which is the most useful for an
unknown environment. ICs come from the factory set
to this mode. If, however, you have only one vehicle
that you regularly connect to, storing that vehicle’s
protocol as the default would make the most sense.

As mentioned, the default setting for the memory
function is determined by the voltage level at pin 5 at
power up (or system reset). If it is connected to a high
level (VDD), then the memory function will be on by
default. If pin 5 is connected to a low level, the
memory saving will be off by default.

MA [Monitor All messages]

Using this command places the ELM327 into a
bus monitoring mode, in which it displays all messages
as it sees them on the OBD bus. This continues
indefinitely until stopped by activity on the RS232
input, or the RTS pin. To stop the monitoring, one can
send a single character then wait for the ELM327 to
respond with a prompt character (‘>’). Alternatively, the
RTS input can be brought to a low level to interrupt the
device as well. Waiting for the prompt is necessary as
the response time is unpredictable, varying depending
on what the IC was doing when interrupted. If for
instance it is in the middle of printing a line, it will first
complete that line then return to the command state,
issuing the prompt character. If it were simply waiting
for input, it would return immediately. Note that the
character which stops the monitoring will always be
discarded, and will not affect subsequent commands.

MR hh [Monitor for Receiver hh]

This command also places the IC in a bus
monitoring mode, displaying only messages that were
sent to the hex address given by hh. These are
messages which are found to have the value hh in the
second byte of a traditional three byte OBD header, in
bits 8 to 15 of a 29 bit CAN ID, or in bits 8 to 10 of an
11 bit CAN ID. Any single RS232 character aborts the
monitoring, as with the MA command.

MT hh [Monitor for Transmitter hh]

Another monitoring command, which displays only
messages sent by transmitter address hh. These are
messages which are found to have that value in the
third byte of a traditional three byte OBD header, or in
bits 0 to 7 for CAN IDs. As with the MA and MR
monitoring modes, any RS232 activity (single
character) aborts the monitoring.

NL [Normal Length messages]

Setting the NL mode on forces all sends and
receives to be limited to the standard seven data bytes
in length, similar to the other ELM32x OBD ICs. To
allow longer messages, use the AL command. The
default is NL on.

PC [Protocol Close]

There may be occasions where it is desirable to
stop (deactivate) a protocol. Perhaps you are not using
the automatic protocol finding, and wish to manually
activate and deactivate protocols. Perhaps you wish to
stop the sending of idle (wakeup) messages, or have
another reason. The PC command is used in these
cases to force a protocol to close.

PP hh OFF [turn Prog. Parameter hh OFF]

This command disables Programmable Parameter
number hh. Any value assigned using the PP hh SV
command will no longer be used, and the factory
default setting will once again be in effect. The actual
time when the new value for this parameter becomes
effective is determined by its type. Refer to the
Programmable Parameters section for more
information on the types.

Note that ‘PP FF OFF’ is a special command that

11 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

disables all of the Programmable Parameters at the
same time, as if you had entered PP OFF for every
possible one.

PP hh ON [turn Programmable Parameter hh ON]

This command enables Programmable Parameter
number hh. Once enabled, any value assigned using
the PP hh SV command will be used where the factory
default value was before. Note that all programmable
parameter values are set to ‘FF’ at the factory, so
enabling a programmable parameter before assigning
a value to it might result in unexpected behaviour. The
actual time when the value for this parameter becomes
effective is determined by its type. Refer to the
Programmable Parameters section for more
information on the types.

Note that ‘PP FF ON’ is a special command that
enables all of the Programmable Parameters at the
same time.

PP xx SV yy [Prog. Param. xx: Set the Value to yy]

A value is assigned to a Programmable Parameter
using this command. The system will not be able to
use this new value until the Programmable Parameter
has been enabled, however.

PPS [Programmable Parameter Summary]

The complete range of current Programmable
Parameters are displayed with this command (even
those not yet implemented). Each is shown as a PP
value followed by a colon and the value that is
assigned to it. This is followed by a single digit - either
‘N’ or ‘F’ to show that it is ON (enabled), or OFF
(disabled), respectively.

R0 and R1 [Responses off (0) or on(1)]

These commands control the ELM327’s automatic
display of responses. If responses have been turned
off, the IC will not wait for a reply from the vehicle after
sending a request, and will return immediately to wait
for the next RS232 command. This is useful if sending
commands blindly when using the IC for a non-OBD
network application, or simulating an ECU in a basic
learning environment. It is not recommended that this
option normally be used, however, as the vehicle may

have difficulty if it is expecting an acknowledgement
byte and never receives one. The default is R1, or
responses on.

RV [Read the input Voltage]

This initiaties the reading of the voltage present at
pin 2, and the conversion of it to a decimal voltage. By
default, it is assumed that the input is connected to the
voltage to be measured through a 47KΩ and 10KΩ
resistor divider (with the 10KΩ connected from pin 2 to
Vss), and that the ELM327 supply is a nominal 5V.
This will allow for the measurement of input voltages
up to about 28V, with an uncalibrated accuracy of
typically about 2%.

SH xx yy zz [Set the Header to xx yy zz]

This command allows the user to manually control
the values that are sent as the three header bytes in a
message. These bytes are normally assigned values
for you (and are not required to be adjusted), but there
may be occasions when it is desirable to change them
(particularly if experimenting with physical addressing).
The value of hex digits xx will be used for the first or
priority/type byte, yy will be used for the second or
receiver/target byte, and zz will be used for the third or
transmitter/source byte. These remain in effect until
set again, or until restored to their default values with
the D, WS, or Z commands.

This command is used to assign all header bytes,
whether they are for a J1850, ISO 9141, ISO 14230, or
a CAN system. The CAN systems will use these three
bytes to fill bits 0 to 23 of the ID word (for a 29 bit ID),
or will use only the rightmost 11 bits for an 11 bit CAN
ID. The additional 5 bits needed for a 29 bit system are
provided through the AT CP command (since they
rarely change).

SH xyz [Set the Header to 00 0x yz]

Entering an 11 bit ID word (header) normally
requires that extra leading zeros be added (eg. AT SH
00 07 DF), but this command simplifies doing so. The
AT SH xyz command accepts a three digit argument,
takes only the right-most 11 bits from that, adds
leading zeros, and stores the result in the header
storage locations for you. As an example, AT SH 7DF
is a valid command, and is quite useful for working

AT Commands (continued)

12 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

with 11 bit CAN systems. It actually results in the
header bytes being internally stored as 00 07 DF.

SP h [Set Protocol to h]

This command is used to set the ELM327 for
operation using the protocol specified by 'h', and to
also save it as the new default. Note that the protocol
will be saved no matter what the AT M0/M1 setting is.

The currently valid protocols are:

0 - Automatic

1 - SAE J1850 PWM (41.6 Kbaud)

2 - SAE J1850 VPW (10.4 Kbaud)

3 - ISO 9141-2 (5 baud init, 10.4 Kbaud)

4 - ISO 14230-4 KWP (5 baud init, 10.4 Kbaud)

5 - ISO 14230-4 KWP (fast init, 10.4 Kbaud)

6 - ISO 15765-4 CAN (11 bit ID, 500 Kbaud)

7 - ISO 15765-4 CAN (29 bit ID, 500 Kbaud)

8 - ISO 15765-4 CAN (11 bit ID, 250 Kbaud)

9 - ISO 15765-4 CAN (29 bit ID, 250 Kbaud)

The Automatic selection (protocol 0) is a
convenient way of telling the ELM327 to automatically
try all protocols, when looking for a valid one. It causes
the ELM327 to sequence through each of the
protocols, looking for one that can be initiated
correctly. When a valid protocol is found, and the
memory function is enabled, that protocol will then be
remembered, and will become the new default setting.
When saved like this, the automatic mode searching
will still be enabled, and the next time the ELM327 fails
to connect to the saved protocol, it will again search all
protocols for another valid one.

If another protocol (other than the Automatic one)
is selected with this command (eg. AT SP 3), that
protocol will become the default, and will be the only
protocol used by the ELM327. Failure to initiate a
connection in this situation will result in familiar
responses such as BUS INIT: ...ERROR, and no other
protocols will be attempted. This is a useful setting if
you know that your vehicle(s) only support one
protocol.

SP Ah [Set Protocol to Auto, h]

This variation of the SP command allows you to
choose a starting (default) protocol, while still retaining

the ability to automatically search for a valid protocol
on a failure to connect. For example, if your vehicle is
ISO 9141-2, but you want to occasionally use the
ELM327 circuit on other vehicles, you might set
AT SP A3. The default protocol will then be 3, but with
the ability to automatically search for other protocols.
Don't forget to disable the memory function if doing
this, or your neighbour’s protocol could become your
new default. As for AT SP h, an AT SP Ah will save
the protocol information even if the memory option is
off. Note that the ‘A’ can come before or after the h, so
AT SP A3 can also be entered as AT SP 3A.

ST hh [Set Timeout to hh]

After sending a request, the ELM327 waits a
preset time before declaring that there was no
response from the vehicle (the ‘NO DATA’ response).
Even if there was a response, the ELM327 will wait
this time to be sure that there are no more responses
coming. The AT ST timeout setting controls the
amount of time that the ELM327 waits.

The actual time that the ELM327 waits is about
4 msec x hh, so passing a value of FF results in the
maximum time of just over one second. A value of 00
is treated as a special case, setting the timer to the
default value (200 ms).

SW hh [Set Wakeup to hh]

Once a data connection has been made, some
vehicles require that there be data flow every few
seconds, or the connection may time out and ‘go to
sleep.’ The ELM327 will automatically generate
periodic ‘wakeup’ messages in order to maintain this
connection, whenever the user is not requesting any
data. (Currently, only protocols 3, 4, and 5 generate
these messages.) The replies to these messages are
always ignored, and are not visible to the user.

The time interval between these periodic ‘wakeup’
messages can be adjusted in 20 msec increments
using the AT SW hh command, where hh is any
hexadecimal value from 00 to FF. The maximum
possible time delay of just over 5 seconds thus occurs
when a value of FF (decimal 255) is used. The default
setting provides a nominal delay of 3 seconds between
messages.

Note that the value 00 (zero) is treated as a very
special case, and must be used with caution, as it will
stop all periodic messages. This is provided as it may

AT Commands (continued)

13 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

AT Commands (continued)

be convenient in certain circumstances. Issuing
AT SW 00 will not change a prior setting for the time
between wakeup messages, should the protocol be re-
initialized.

TP h [Try Protocol h]

This command is identical to the SP command,
except that the protocol that you select is not
immediately saved in internal memory, so does not
change the default setting. Note that if the memory
function is enabled (AT M1), and this new protocol that
you are trying is found to be valid, that protocol will
then be stored in memory as the new default.

TP Ah [Try Protocol h with Auto]

This command is almost the same as the SP Ah
one, except that the protocol selected is only tested,
and is not immediately saved in the internal
(EEPROM) memory. The protocol selected will be
tried, and if it fails to initialize, the ELM327 will
automatically sequence through all of the protocols,
attempting to connect to one of them.

WM xx yy zz aa or WM xx yy zz aa bb or

WM xx yy zz aa bb cc [set Wakeup Message to…]

This command allows the user to override the
default settings for the wakeup messages (sometimes
known as the ‘periodic idle’ messages). The user must
provide the three header bytes (xx yy zz), and either
one (aa), two (aa bb) or three data bytes (aa bb cc). It
is not necessary to provide the checksum byte - the
ELM327 creates it for you. The message provided will
be periodically sent at the rate determined by the
AT SW setting (note that the ELM327 never prints
replies to these messages). Byte values assigned with
this command are not affected by those set with other
commands (such as AT SH) and do not have any
effect on the transmission of normal OBD request
messages.

WS [Warm Start]

This command causes the ELM327 to perform a
complete reset which is very similar to the AT Z
command, but does not include the power on LED
test. Users may find this a convenient means to

quickly “start over” without having the extra delay of
the AT Z command.

Z [reset all]

This command causes the chip to perform a
complete reset as if power were cycled off and then on
again. All settings are returned to their default values,
and the chip will be put in the idle state, waiting for
characters on the RS232 bus.

14 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

AT Command Summary

General Commands

D set all to Defaults

E0 Echo Off

E1 Echo On*

I print the version ID

L0 Linefeeds Off (default set by pin 7)

L1 Linefeeds On

WS Warm Start (quick software restart)

Z reset all

OBD Commands

AL Allow Long (>7 byte) messages

BD perform a Buffer Dump

BI Bypass the Initialization sequence

DP Describe the current Protocol

DPN Describe the Protocol by Number

H0 Headers Off*

H1 Headers On

M0 Memory Off (default set by pin 5)

M1 Memory On

MA Monitor All

MR hh Monitor for Receiver = hh

MT hh Monitor for Transmitter = hh

NL Normal Length (7 byte) messages*

PC Protocol Close

R0 Responses Off

R1 Responses On

SH xyz Set Header

SH xx yy zz Set Header

SP h Set Protocol to h and save it

SP Ah Set Protocol to Auto, h and save it

ST hh Set Timeout to hh x 4 msec

TP h Try Protocol h

TP Ah Try Protocol h with Auto search

CAN Specific Commands

CAF0 CAN Automatic Formatting Off

CAF1 CAN Automatic Formatting On*

CF hhh set the ID Filter to hhh

CF hh hh hh hh set the ID Filter to hhhhhhhh

CFC0 CAN Flow Control Off

CFC1 CAN Flow Control On*

CM hhh set the ID Mask to hhh

CM hh hh hh hh set the ID Mask to hhhhhhhh

CP hh set CAN Priority (only for 29 bit)

CS show the CAN Status

FC SM h Flow Control Set the Mode to h

FC SH hhh Flow Control Set the Header to hhh

FC SH hh hh hh hh FC Set Header to hhhhhhhh

FC SD [1 to 5 data bytes] FC Set Data to [...]

ISO Specific Commands

IB 10 set the ISO Baud rate to 10400*

IB 96 set the ISO Baud rate to 9600

SW hh Set Wakeup interval to hh x 20 msec

WM xx yy zz aa set the Wakeup Message

WM xx yy zz aa bb “ “

WM xx yy zz aa bb cc “ “

Misc. Commands

CV dddd Calibrate the Voltage to dd.dd volts

PP xx OFF disable Prog Parameter xx

PP FF OFF all Prog Parameters Off

PP xx ON enable Prog Parameter xx

PP FF ON all Prog Parameters On

PP xx SV yy for PP xx, Set the Value to yy

PPS print a PP Summary

RV Read the Voltage

 * = default setting

15 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Reading the Battery Voltage

Before proceding to the OBD Commands, we will
show an example of how to use an AT Command. We
will assume that you have built (or purchased) a circuit
which is similar to that of Figure 9 in the Example
Applications section. This circuit provides a connection
to read the vehicle’s battery voltage, which many will
find very useful.

If you look in the AT Command list, you will see
there is one command that is listed as RV [Read the
input Voltage]. This is the command which you will
need to use. First, be sure that the prompt character is
shown (that is the ‘>’ character), then simply enter ‘AT’
followed by RV, and press return (or enter):

>at rv
12.6V

>

Note that we did not use upper case characters in
this example, mostly out of laziness. The ELM327 will
accept upper case (AT RV) as well as lower case (at
rv) or any combination of these (At rV). It does not
matter to the ELM327. Also note that we have shown a
space character (‘ ’) between the ‘at’ and the ‘rv’. This
is only to separate the commands and make them
more readable. You do not have to add spaces, or if
you wish, you can add many spaces – it does not
affect the internal interpretation of the command.

As shipped from the factory, the ELM327 voltage
reading circuitry will typically be accurate to about 2%.
For many, this is all that is needed. Some people may
want to calibrate the circuitry for more accurate
readings, however, so we have provided a special
‘Calibrate Voltage’ command for this.

To change the internal calibration constants, you
will need to know the actual battery voltage to more
accuracy than the ELM327 shows. Many quality digital
multimeters can do this, but you should verify the
accuracy before making too many changes. Perhaps
in this case, you have connected your multimeter, and
find that it reads 12.47V, and you would like the
ELM327 to read the same. Simply calibrate it to that
voltage using the CV command:

>at cv 1247
OK

At this point, the internal values have been
changed, and the ELM327 knows that the current

voltage at the input is actually 12.47V. You should not
provide the decimal point in the value, as the IC knows
that it should be between the second and the third
digits. To verify that the changes have taken place,
simply read the voltage again:

>at rv
12.5V

>

The ELM327 always rounds off the measurement
to one decimal place, so the 12.47V actually appears
as 12.5V. Note that the second decimal place is
always maintained internally, and used in the
calculations but never displayed.

The ELM327 can be calibrated with any reference
voltage that you have available, but note that the CV
command always expects to receive four characters
representing the voltage at the input. If you use a 9V
battery for your reference, and it is actually 9.32V, then
you must add a leading zero to that when calibrating
the IC:

>at cv 0932
OK

>

Other AT Commands are used in the same
manner. Simply type the letters A and T, follow that
with the command you want to send, then any
arguments that are required for that command, and
press return (or enter, depending on your keyboard).
You can place space characters as often as you wish
if it improves the readability for you, as they are
ignored by the ELM327.

OBD Commands

If the bytes that you send to the ELM327 do not
begin with the letters ‘A’ and ‘T’, they are assumed to
be OBD commands for the vehicle. Each pair of ASCII
bytes will be tested to ensure that they are valid
hexadecimal digits, and will then be combined into
single data bytes for transmitting to the vehicle.

OBD commands are actually sent to the vehicle
embedded in a data packet. Most standards require
that three header bytes and an error checksum byte
be included with every OBD message, and the
ELM327 adds these extra bytes to your command
bytes automatically. The initial (default) values for
these header bytes are usually appropriate for most
requests, but if you wish to change them, there is a
method to do so (see the “Setting the Headers”
section).

Most OBD commands are only one or two bytes in
length, but some can be three or more bytes long. The
ELM327 will normally limit the number of bytes that
can be sent to seven (14 hexadecimal digits), the
maximum number allowed by the standards. Attempts
to send either an odd number of hex digits, or too
many digits will result in a syntax error – the entire
command is then ignored and a single question mark
printed.

Hexadecimal digits are used for all of the data
exchange with the ELM327 because it is the data
format used most often in the relevant standards. It is
consistent with mode request listings and is the most
frequently used format used to display results. With a
little practice, it should not be very difficult to deal in
hex numbers, but some people may want to use a
table such as Figure 1, or keep a calculator nearby.
All users will be required to manipulate the results in
some way, though – combining bytes and dividing by 4
to obtain rpm, dividing by 2 to obtain degrees of
advance, etc., and may find a software front-end to be
more helpful.

As an example of sending a command to the
vehicle, assume that A6 (or decimal 166) is the
command that is required to be sent. In this case, the
user would type the letter A, then the number 6, then
would press the return key. These three characters
would be sent to the ELM327 by way of the RS232
port. The ELM327 would store the characters as they
are received, and when the third character (the
carriage return) was received, would begin to assess
the other two. It would see that they are both valid hex
digits, and would convert them to a one byte value
(decimal value is 166). The header bytes and a

checksum byte would be added, and a total of five
bytes would typically be sent to the vehicle. Note that
the carriage return character is only a signal to the
ELM327, and is not sent on to the vehicle.

After sending the command, the ELM327 listens
on the OBD bus for messages, looking for ones that
are directed to it. If a message address matches,
those received bytes will be sent on the RS232 port to
the user, while messages received that do not have
matching addresses will be ignored (but still available
for viewing with the AT BD command).

The ELM327 will continue to wait for messages
addressed to it until there are none found in the time
that was set by the AT ST command. As long as
messages are received, the ELM327 will continue to
reset this timer. Note that the IC will always respond
with something, even if it is to say “NO DATA”
(meaning that there were no messages at all
addressed to it).

16 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Figure 1. Hex to Decimal Conversion

Hexadecimal
Number

Decimal
Equivalent

0
1

3
2

4
5
6

0
1

3
2

4
5
6

7 7
8 8
9 9
A 10
B 11
C 12
D 13
E 14
F 15

Talking to the Vehicle

The ELM327 cannot be directly connected to a
vehicle as it is, but needs support circuitry as shown in
the Example Applications section. Once incorporated
into such a circuit, one need only use a terminal
program to send bytes to and receive them from the
vehicle via the ELM327.

The standards specify that each group of bytes
sent to the vehicle must adhere to a set format. The
first byte (known as the ‘mode’) always describes the
type of data being requested, while the second, third,
etc. bytes specify the actual information required
(given by a ‘parameter identification’ or PID number).
The modes and PIDs are described in detail in the
SAE document J1979 (ISO 15031-5), and may also be
expanded on by the vehicle manufacturers.

Normally, one is only concerned with the nine
diagnostic test modes described by J1979 (although
there is provision for more). All of these modes are not
required to be supported by every vehicle, and are
often not. These are the nine modes:

01 - show current data
02 - show freeze frame data
03 - show diagnostic trouble codes
04 - clear trouble codes and stored values
05 - test results, oxygen sensors
06 - test results, non-continuously monitored
07 - show “pending” trouble codes
08 - special control mode
09 - request vehicle information

Within each mode, PID 00 is normally reserved to
show which PIDs are supported by that mode. Mode
01, PID 00 must be supported by all vehicles, and can
be accessed as follows:

Ensure that the ELM327 is properly connected to
your vehicle, and powered. Most vehicles will not
respond without the ignition key in the ON position, so
turn the ignition to on, but do not start the engine. At
the prompt, issue the mode 01 PID 00 command:

>01 00

The first time the bus is accessed, you may see a
bus initialization message, and then the response,
which might typically be as follows:

41 00 BE 1F B8 10

The 41 00 signifies a response (4) from a mode 1
request from PID 00 (a mode 2, PID 00 request is
answered with a 42 00, etc.). The next four bytes (BE,
1F, B8, and 10) represent the requested data, in this

case a bit pattern showing the PIDs supported by this
mode (1=supported, 0=not). Although this information
is not very useful for the casual user, it does prove that
the connection is working.

Another example requests the current engine
coolant temperature (ECT). This is PID 05 in mode 01,
and can be requested as follows:

>01 05

The response will be of the form:

41 05 7B

The 41 05 shows that this is a response to a
mode 1 request for PID 05, while the 7B is the desired
data. Converting the hexadecimal 7B to decimal, one
gets 7 x 16 + 11 = 123. This represents the current
temperature in degrees Celsius, but with the zero
offset to allow for subzero temperatures. To convert to
the actual coolant temperature, you need to subtract
40 from the value obtained. In this case, then, the
coolant temperature is 123 - 40 or 83 °C.

A final example shows a request for the engine
rpm. This is PID 0C of mode 01, so at the prompt type:

>01 0C

A typical response would be:

41 0C 1A F8

The returned value (1A F8) is actually a two byte
value that must be converted to a decimal value to be
useful. Converting it, we get a value of 6904, which
seems to be a very high value for engine rpm. That is
because rpm is sent in increments of 1/4 rpm! To
convert to the actual engine speed, we need to divide
the 6904 by 4. In this case, then, the rpm is 1726,
which is much more reasonable.

Hopefully this has shown how typical requests
proceed. It has not been meant to be a definitive guide
on modes and PIDs - this information can be obtained
from the manufacturer of your vehicle, the SAE
(http://www.sae.org/), from ISO (http://www.iso.org/),
or from various other sources on the web.

17 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Interpreting Trouble Codes

Likely the most common use that the ELM327 will
be put to is in obtaining the current Diagnostic Trouble
Codes or DTCs. Minimally, this requires that a mode
03 request be made, but first one should determine
how many trouble codes are presently stored. This is
done with a mode 01 PID 01 request as follows:

>01 01

To which a typical response might be:

41 01 81 07 65 04

The 41 01 signifies a response to the request, and
the next data byte (81) is the number of current trouble
codes. Clearly there would not be 81 (hex) or 129
(decimal) trouble codes present if the vehicle is at all
operational. In fact, this byte does double duty, with
the most significant bit being used to indicate that the
malfunction indicator lamp (MIL, or ‘Check Engine
Light’) has been turned on by one of this module’s
codes (if there are more than one), while the other 7
bits of this byte provide the actual number of stored
trouble codes. In order to calculate the number of
stored codes when the MIL is on, then, subtract 128
(or 80 hex). When the result is less than 128, simply
read the number of stored codes directly.

The above response then indicates that there is
one stored code, and it was the one that set the Check
Engine Lamp or MIL on. The remaining bytes in the
response provide information on the types of tests
supported by that particular module (see the SAE
document J1979 for further information).

In this instance, there was only one line to the
response, but if there were codes stored in other
modules, they each could have provided a line of
response. To determine which module is reporting the
trouble code, one would have to turn the headers on
(AT H1) and then look at the third byte of the three
byte header for the address of the module that sent
the information.

Having determined the number of codes stored,
the next step is to request the actual trouble codes
with a mode 03 request:

>03

A response to this could be:

43 01 33 00 00 00 00

The ‘43’ in the above response simply indicates
that this is a response to a mode 03 request. The other
6 bytes in the response have to be read in pairs to
show the trouble codes (the above would be
interpreted as 0133, 0000, and 0000). Note that the

response has been padded with 00’s as required by
the SAE standard for this mode – the 0000’s do not
represent actual trouble codes.

As was the case when requesting the number of
stored codes, the most significant bits of each trouble
code also contain additional information. It is easiest to
use the following table to interpret the extra bits in the
first digit as follows:

Powertrain Codes - SAE defined0

“ “ - manufacturer defined

“ “ - SAE defined

“ “ - jointly defined

1

2

3

If the first hex digit received is this,
Replace it with these two characters

Chassis Codes - SAE defined4

“ “ - reserved for future

5

6

7

Body Codes - SAE defined8

9

A

B

Network Codes - SAE definedC

D

E

F

P0

P1

P2

P3

C0

C1

C2

C3

B0

B1

B2

B3

U0

U1

U2

U3

“ “ - reserved for future

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - manufacturer defined

“ “ - reserved for future

Taking the example trouble code (0133), the first
digit (0) would then be replaced with P0, and the 0133
reported would become P0133 (which is the code for
an ‘oxygen sensor circuit slow response’). As for
further examples, if the response had been D016, the
code would be interpreted as U1016, while a 1131
would be P1131.

Although we have only shown one line of
response in this example, there is always the possiblity
that you will receive several lines of response, or more
than one ECU module will respond to your requests.
Refer to the Multiline Responses section for more
details concerning this.

18 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Resetting Trouble Codes

The ELM327 is quite capable of resetting
diagnostic trouble codes, as this only requires issuing
a mode 04 command. The consequences should
always be considered before sending it, however, as
more than the MIL (or ‘Check Engine Light’) will be
reset. In fact, issuing a mode 04 will:

- reset the number of trouble codes
- erase any diagnostic trouble codes
- erase any stored freeze frame data
- erase the DTC that initiated the freeze frame
- erase all oxygen sensor test data
- erase mode 06 and 07 test results

 Clearing of all of this information is not unique to
the ELM327 – it occurs whenever a scan tool is used
to reset the codes. The biggest problem with losing
this data is that your vehicle may run poorly for a short
time, while it performs a recalibration.

To avoid inadvertently erasing stored information,
the SAE specifies that scan tools must verify that a

mode 04 is intended (“Are you sure?”) before actually
sending it to the vehicle, as all trouble code
information is immediately lost when the mode is sent.
Remember that the ELM327 does not monitor the
content of the messages, so it will not know to ask for
confirmation of the mode request – this would have to
be the duty of a software interface if one is written.

As stated, to actually erase diagnostic trouble
codes, one need only issue a mode 04 command. A
response of 44 from the vehicle indicates that the
mode request has been carried out, the information
erased, and the MIL turned off. Some vehicles may
require a special condition to occur (eg. the ignition on
but the engine not running) before they will respond to
a mode 04 command.

That is all there is to clearing the codes. Once
again, be very careful not to accidentally send that 04
code!

19 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Quick Guide for Reading Trouble Codes

If you don’t use your ELM327 for some time, this
entire data sheet may seem like quite a bit to review
when your ‘Check Engine’ light does eventually come
on. We offer this section as a quick guide to the basics
that you will need.

To get started, connect the ELM327 circuit to your
PC or PDA and communicate with it using a terminal
program such as HyperTerminal, ZTerm, ptelnet, or a
similar program. It should be set to either 9600 or
38400 baud, 8 data bits, and no parity or handshaking.

The chart at the right provides a quick procedure
on what to do next:

Ignition Key to ON, but vehicle not running

>0101
to see how many codes are present
(look at the second digit of the 3rd byte)

>03
to see the codes
Ignore the first byte and read the others in
pairs. The table on page 18 helps.

>04
to reset the codes

FIX THE VEHICLE!

20 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Wakeup Messages

After an ISO 9141 or ISO 14230 connection has
been established, there needs to be periodic data
transfers in order to maintain that connection, and
prevent it from ‘going to sleep’. If normal requests and
responses are being sent, that is usually sufficient, but
the ELM327 occasionally has to create its own
messages to prevent the connecton from timing out.

We term these periodic messages that are created
the ‘Wakeup Messages’, as they keep the connection
alive, and prevent the circuitry from going back to an
idle or sleep mode. (Some texts refer to these
messages simply as ‘idle messages.’) The ELM327
automatically creates and sends these for you if there
appears to be no other activity – there is nothing that
you need do to ensure that they occur. To see these,
once a connection is made, simply monitor the OBD
transmit LED - you will see the periodic ‘blips’ created
when the ELM327 sends one. If you are curious as to
the actual contents of the messages, you can then
perform a Buffer Dump to see the bytes. Note that the
ELM327 never obtains or prints a response to any of
these wakeup messages.

The standards state that if there is no activity at
least every five seconds, the data connection may
close. To ensure that this does not happen, and

provide some margin, the ELM327 will send a wakeup
message after three seconds of inactivity. This time
interval is fully programmable, should you prefer a
different setting (see the AT SW command).

As with the ELM323, the ELM327 allows users to
change the actual wakeup message that is sent. To do
so, simply send the ELM327 a Wakeup Message
command, telling it what you wish the message to be
changed to. For example, if you would like to send the
data bytes 44 55 with the header bytes set to 11 22
33, simply send the command:

>AT WM 11 22 33 44 55

From that point forward, every wakeup message
that the ELM327 sends will be as shown above.

You can change these as often as you want, the
only restriction being that every time you do, you must
provide the complete message - three header bytes
followed by either one, two, or three data bytes (the
current version of the ELM327 only allows for a
maximum of three data bytes). You need not worry
about providing a checksum, as it will be automatically
added for you.

Bus Initiation

Both the ISO 9141-2 and ISO 14230-4 (KWP2000)
standards require that the vehicle’s OBD bus be
initialized before any communications can take place.
The ISO 9141 standard allows for only a slow (2 to 3
second) initiation process, while ISO 14230 allows for
both a slow method, and a faster alternative.

The ELM327 will perform this bus initiation for you,
but not until the first message needs to be sent. If this
occurs during the automatic search process, you will
not see any status reporting while the initiation process
is taking place, but if you have the Auto option off, then
you will see a message similar to this:

BUS INIT: ...

The three dots appear only as the slow initiation
process is carried out - a fast initiation does not show
them. This will be followed by either the expression
‘OK’ to say it was successful, or else an error message
to indicate that there was a problem. (The most
common error encountered is in forgetting to turn the
vehicle’s key to ‘ON’ before attempting to talk to the

vehicle.)
 Once the bus has been initiated, communications

must take place regularly (typically at least once every
five seconds), or the bus will revert to a low-power
‘sleep’ mode. If you are not sending data requests
often enough, the ELM327 will generate requests for
you to ensure that the bus stays ‘awake’. You will
never see the responses to these, but you may see
the transmit LED flash periodically when these are
being sent.

By default, the ELM327 ensures that these
‘wakeup’ or ‘idle’ messages are sent every 3 seconds,
but this is adjustable with the AT SW command. The
contents of the wakeup message are also user
programmable with the AT WM command, if you wish
to change them. Users generally do not have to
change either of the above though, as the default
settings work with almost all systems.

21 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Selecting Protocols

The ELM327 supports several different OBD
protocols (see Figure 2 below). As a user, you may
never have to choose which one to use, since the
factory settings cause an automatic search to be
performed for you, but while experimenting, you may
want the ability to choose.

If you know that your vehicle supports a particular
protocol, you may want to set the ELM327 to use that
protocol only. If, for example, your vehicle is known to
use SAE J1850 VPW, and that is all you want, simply
look up that protocol in the chart below, then use the
‘Set Protocol’ AT Command:

>AT SP 2
OK

From this point on, the default protocol (used after
power-up or an AT D command) will be protocol 2 (or
whichever one that you have chosen). Verify this by
asking the ELM327 to describe the current protocol:

>AT DP
SAE J1850 VPW

Now what happens if your friend has a vehicle that
uses ISO 9141-2? How do you use the ELM327
interface for that vehicle? There are a few choices...

One possibility is to change your protocol selection
to allow automatic searching for another protocol, on
failure of the current one. This is done by putting an ‘A’
with the protocol number:

>AT SP A2
OK

>AT DP
AUTO, SAE J1850 VPW

Now, the ELM327 will always begin by trying
protocol 2, but will automatically begin searching for
another should an attempt to connect with protocol 2
fail (as would happen when you try to connect to the
friend’s vehicle). Be aware that if you also have the
memory function enabled, when you connect to your
friend’s vehicle, their protocol will be stored in memory
as the new default protocol (but it will find yours as the
new default when you again connect to your own
vehicle).

Perhaps you have disabled the memory function
(set pin 5 to 0V), and have used AT SP 2 to customize

the IC to your vehicle only. In effect, you have turned
your ELM327 into an ELM322 type interface. It will not
begin searching for another protocol when it fails to
connect simply because you forgot to turn the ignition
key on, which could be exactly what you want. In this
case, you might want to use the ‘Try Protocol’
command for your friend’s vehicle, rather than setting
something permanently. You can either say:

>AT TP 3
OK

if you already know that your friend’s vehicle uses
protocol 3, or else you can say:

>AT TP 0
OK

which automatically cycles through all of the protocols
looking for one that responds.

In general, users find that enabling the memory
(setting pin 5 to 5V) and choosing the ‘Auto’ option
(the easiest way is to say AT SP 0) works very well.
After the initial search, the protocol used by your
vehicle becomes the new default mode (so it is tried
first every time), and if the interface is used on another
vehicle, there is only a minor delay while it performs an
automatic search.

Figure 2. ELM327 Protocol Numbers

Description

SAE J1850 PWM (41.6 Kbaud)

Protocol

0

1

2

3

4

5

6

7

8

9

Automatic

SAE J1850 VPW (10.4 Kbaud)

ISO 9141-2 (5 baud init)

ISO 14230-4 KWP (5 baud init)

ISO 14230-4 KWP (fast init)

ISO 15765-4 CAN (11 bit ID, 500 Kbaud)

ISO 15765-4 CAN (29 bit ID, 500 Kbaud)

ISO 15765-4 CAN (11 bit ID, 250 Kbaud)

ISO 15765-4 CAN (29 bit ID, 250 Kbaud)

OBD Message Formats

To this point we have only discussed the contents
of an OBD message, and made only passing mention
of other parts such as headers and checksums, which
all data packets use to some extent.

On Board Diagnostics systems are designed to be
very flexible, providing a means for several devices to
communicate with one another. In order for messages
to be sent between devices, it is necessary to add
information describing the type of information being
sent, the device that it is being sent to, and perhaps
which device is doing the sending. Additionally, the
importance of the message becomes a concern as
well - crankshaft position information is certainly of
considerably more importance to a running engine
than a request for the number of trouble codes stored.
To convey importance, messages are also assigned a
priority.

The information describing the priority, the
intended recipient, and the transmitter are usually
needed by the recipient even before they know the
contents of the message. To ensure that this
information is obtained first, OBD systems transmit it
at the start (or head) of the message. Since these
bytes are at the head, they are usually referred to as
header bytes. Figure 3 below shows a typical OBD
message structure that is used by the SAE J1850,
ISO 9141-2, and ISO 14230-4 standards. It uses 3
header bytes as shown to provide details concerning
the priority, the receiver, and the transmitter. Note that

22 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

many texts refer to the receiver as the “Target
Address” (TA), and the transmitter as the “Source
Address” (SA).

Another concern when sending any message is
that errors might occur, and the received data may be
falsely interpreted. To detect errors, the various
protocols all provide some form of check on the
received data, often as simple as a sum calculation (a
‘running total’ is maintained by the receiver as a
message is being processed). This is compared to the
‘running total’ sent by the transmitter, and if they do
not agree, an error has occured. The total is generally
referred to as a ‘checksum’ or a ‘CRC byte’ and is
usually sent at the end of a message. If an error is
detected, the different protocols provide various ways
of handling it.

The OBD data bytes are thus normally
encapsulated within a message, with ‘header’ bytes at
the beginning, and a ‘checksum’ at the end. The
J1850, ISO 9141-2, and ISO 14230-4 protocols all use
essentially the same structure, with three header
bytes, a maximum of seven data bytes and one
checksum byte, as shown in Figure 3 below.

The ISO 15765-4 (CAN) protocol uses a very
similar structure, the main difference really only
relating to the structure of the header. CAN header
bytes are not referred to as that - they are called ‘ID
bits’ instead. The initial CAN standard defined the ID
bits as being 11 in number, and the more recent CAN

Figure 3. An OBD Message

Figure 4. A CAN OBD Message

ID bits (11 or 29) 7 data bytes checksumPCI

up to 7 data bytes checksum3 header bytes

priority receiver transmitter

TA SA

23 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

standard now allows 29 in total.
The ELM327 does not normally show any of these

extra bytes unless you turn that feature on with the
Headers On command (AT H1). Issuing that allows
you to see all three header and the single checksum
byte for the J1850, ISO 9141 and ISO 14230
protocols. For the CAN protocols, however, you will
instead see the ID bits (sent as hexadecimal digits),
and also what is known as a PCI byte, just before the
start of the data.

The ELM327 does not display the checksum
information for CAN systems, nor does it show the IFR
bytes for J1850. If you wish to know more about these
last terms, it would be wise to purchase the relevant
standard from either ISO, or the SAE.

It is not necessary to ever have to set these
header byes or perform one of these checksum
calculations – the ELM327 will always do this for you.
The header bytes are adjustable however, should you
wish to use advanced techniques such as physical
addressing. The next section provides a discussion on
how to do this…

OBD Message Formats (continued)

Setting the Headers

The emissions related diagnostic trouble codes
that most people are familiar with are described in the
SAE J1979 standard (ISO15031-5). They represent
only a portion of the data that a vehicle may have
available – much more can be obtained if you are able
to direct the requests elsewhere.

Accessing most OBDII diagnostics information
requires that requests be made to what is known as a
a ‘functional address.’ Any processor that supports the
function will respond to the request (and theoretically,
many different processors can respond to a single
functional request). In addition, every processor (or
ECU) will also respond to what is known as their
physical address. It is the physical address that
uniquely identifies each module in a vehicle, and
permits you to direct more specific queries to only one
particular module.

 To retrieve information beyond that of the OBDII
requirements then, it will be necessary to direct your
requests to either a different functional address, or to
an ECU’s physical address. This is done by changing
the data bytes in the message header.

As an example of functional addressing, let us
assume that you want to request that the processor
responsible for Engine Coolant provide the current
Fluid Temperature. You do not know its address, so
you consult the SAE J2178 standard and determine
that Engine Coolant is functional address 48. SAE
standard J2178 also tells you that for your J1850 VPW
vehicle, a priority byte of A8 is appropriate. Finally,
knowing that a scan tool is normally address F1, you
have enough information to specify the three header
bytes (A8 48 and F1). To tell the ELM327 to use these
new header bytes, all you need is the Set Header
command:

>AT SH A8 48 F1

OK

The three header bytes assigned in this manner
will stay in effect until changed by the next AT SH
command, a reset, or an AT D.

Having set the header bytes, you now need only
send the secondary ID for fluid temperature (10) at the
prompt. If the display of headers is turned off, the
conversation could look like this:

>10

10 2E

The first byte in the response echos the request,
as usual, while the data that we requested is the 2E
byte. You may find that some requests, being of a low
priority, may not be answered immediately, possibly
causing a “NO DATA” result. In these cases, you may
want to adjust the timeout value, perhaps first trying
the maximum (use AT ST FF). Many vehicles will
simply not support these extra addressing modes.

The other (more common) method of obtaining
information is by physical addressing, in which you
direct your request to a specific device, not to a
functional group. To do this, you again need to
construct a set of header bytes that direct your query
to the physical address of the processor, or ECU. If
you do not know the address, recall that the sender of
information is usually shown in the third byte of the
header. By monitoring your system for a time with the
headers turned on (AT H1), you can quickly learn the
main addresses of the senders. The SAE document
J2178 assigns address ranges to these devices if you
are unsure of which might be most appropriate.

When you know the address that you wish to
‘speak to’, simply use it for the second byte in the
header. Combine that with your knowledge of
SAE J2178 (it is beyond the scope of this document to
try to explain it any further) to choose a priority/type
byte. For this example, we are assuming the vehicle to
be J1850 PWM, and select E4 for this byte. Finally,
you need to identify yourself to the target, so that
responses can be returned to you. As is customary for
diagnostic tools, we’ll use an address of F1. As before,
these three bytes are then assigned to the header with
the set header command:

>AT SH E4 10 F1

OK

From this point on, all messages that the ELM327
sends will use these three bytes for the header. All that
needs to be done now is to request data from the
vehicle. For physical addressing, this is often done
using mode 22:

>22 116B

62 11 6B 00 00

The response to this command is of the same
format to those seen for ‘standard’ OBD requests. The
request has been repeated (with 40 added to the

24 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Setting the Headers (Cont’d)

25 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

>AT SH xx yy zz>AT CP vv

vv xx yy zz

5 bits only

xx yy zzvv

29 bit ID

Figure 5. Setting a 29 bit CAN ID

mode value in order to show that this is a response),
and this is followed by the actual data (0000 in this
case). The PIDs used with mode 22 are usually
proprietary to each manufacturer and are generally not
published widely, so you may have difficulty in
determining the ones to use with your vehicle. Elm
Electronics does not maintain lists of this information,
and can not provide any further details for you. Mode
22 and others are described in more detail in SAE
document J2190 “Enhanced E/E Diagnostic Test
Modes”.

The ISO14230-4 standard defines its’ header
bytes a little differently. Advanced experimenters will
be aware that for ISO14230-4, the first header byte
must always include the length of the data field, which
varies from message to message. From that, one
might assume that the you would need to redefine the
header for every message that is to be sent - not so!
The ELM327 always determines the number of bytes
that you are sending, and inserts that length for you,
so when defining an ISO 14230-4 header, you need
only provide the two (most significant) format bits, and
can ignore the length bits. We are occasionally
questioned about the additional length byte that the
generic ISO 14230 standard provides for. The current
version of the ELM327 only supports that which is
required by ISO 14230-4, which is the three byte
header, and no additional length byte.

Addressing within the CAN (ISO 15765-4)
protocols is quite similar in many ways. First, consider
the 29 bit standard. The ELM327 splits the 29 bits into
a CAN Priority byte and the three header bytes that we
are now familiar with. Figure 5 shows how these are

>AT SH xx yy zz

xx yy zz

11 bit ID

Figure 6. Setting an 11 bit CAN ID

combined for use by the ELM327.
The CAN standard states that for diagnostics, the

priority byte (‘vv’ in the diagram) shall always be 1B
(and is the default value used by the ELM327). Using
a separate instruction to set these ‘priority’ bits is only
a minor inconvenience, as they are rarely changed.
The next byte (‘xx’) describes the type of message that
this is, and is set to hex DB for functional addressing,
and to DA if using physical addressing. The next two
bytes are as defined previously for the other standards
- ‘yy’ is the receiver (or Target Address), and ‘zz’ is the
transmitter (or Source Address). For the functional
diagnostic requests, the receiver is always 33, and the
transmitter is F1, which is very similar to ISO 14230-4.

Those that are familiar with the SAE J1939
standard will likely find this header structure to be
familiar. (J1939 is a CAN standard for use by ‘heavy-
duty vehicles’ such as trucks and buses). We use
slightly different terminology, but there is a direct
parallel between the bytes used by J1939 for the
headers and the grouping of the bytes in the ELM327.
Although we do not specifically claim to support J1939,
you may find this IC to be useful when experimenting
with it. Experimenters are cautioned however, that the
auto-formatting (adding PCI bytes) and the sending of
flow control messages are enabled by default in the
ELM327. You will likely need to turn them both off (AT
CAF0, and AT CFC0) before sending any J1939
messages. As of v1.1, they can be set to off by default
as well, using PP 24 and PP 25.

The final header format to discuss is that used in
11 bit CAN systems. They also use a priority/address
structure, but shorten it into roughly three nibbles

26 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Setting the Headers (Cont’d)

rather than three bytes. The ELM327 uses the same
commands to set these values as for other headers,
except that it only uses the 11 least significant (‘right-
most’) bits of the provided header bytes, and ignores
the others (as shown in Figure 6). It quickly becomes
inconvenient to have to enter six digits when only three
are required, so there is a special ‘short’ version of the
AT SH command that uses only three hex digits. It
actually operates by simply adding the leading zeroes
for you.

The 11 bit CAN standard typically makes
functional requests (ID/header = 7DF), but receives
physical replies (7En). With headers turned on, it is a
simple matter to learn the address of the module that
is replying, then use that information to make physical
requests if desired. For example, if the headers are on,
and you send 01 00, you might see:

>01 00
7E8 06 41 00 BE 3F B8 13 00

The 7E8 shows that ECU#1 has responded. In
order to talk directly to that ECU, all you need do is to
set the header to the appropriate value (it is 7E0 to talk
to the 7E8 device – see ISO 15765-4 for more
information). From that point on, you can ‘talk’ directly
to the ECU using its physical address, as shown here:

>AT SH 7E0
OK

>01 05
7E8 03 41 05 46 00 00 00 00

Hopefully this has helped to get you started. As we
often tell those that write – if you are planning to do
some serious experimenting with OBD, you should buy
the relevant standards.

Monitoring the Bus

Some vehicles use the OBD bus for information
transfer during normal vehicle operation, passing a
great deal of information over it. A lot can be learned if
you have the good fortune to connect to one of these
vehicles, and are able to decipher the contents of the
messages.

To see how your vehicle uses the OBD bus, you
can enter the ELM327’s ‘Monitor All’ mode, by sending
the command AT MA from your terminal program. This
will cause the IC to display any information that it sees
on the OBD bus, regardless of transmitter or receiver
addresses (it will show all). Note that the periodic
‘wakeup’ messages are not sent while in this mode, so
if you have an ISO 9141 or ISO 14230 bus that had
been initialized previously, it may ‘go to sleep’ while
monitoring.

The monitoring mode can be stopped by putting a
low logic level on the RTS pin, or by sending a single
RS232 character to the ELM327. Any convenient
character can be used to interrupt the IC - there are no
restrictions on whether it is printable, etc. Note that the
character you send will be discarded, and will have no
effect on any subsequent commands. The time it takes
to respond to this interrupting character will depend on
what the ELM327 is doing when it is received. The IC
will always finish a task that is in progress (printing a
line, for example) before returning to wait for input, so
you should always wait for the prompt character (‘>’),
or the Busy line to go low, before beginning to send a
command.

One unexpected result may occur if you have the
‘Auto’ protocol search feature enabled, and you tell the
ELM327 to begin monitoring when a bus is quiet. In
this case, the ELM327 will begin searching for another
protocol, which can be unexpected. Be aware also that
the ISO 9141 and ISO 14230 protocols look identical
when monitoring, so the ELM327 will likely stop
searching at ISO 9141, even if the protocol is
ISO 14230. With the Automatic searching enabled, this
should correct itself, however, when the first OBD
request is made.

If the “Monitor All’ command provides too much
information (it certainly does for most CAN systems!),
then you can restrict the range of data that is to be
displayed. Perhaps you only want to see messages
that are being transmitted by the ECU with address 10.
To do that, simply type:

>AT MT 10

and all messages that contain 10 in the third byte of
the header will be displayed.

Using this command with 11 bit CAN systems can
be a little confusing at first. Recall the way in which all
header bytes are stored within the ELM327. An 11 bit
CAN ID is actually stored as the least significant 11
bits in the 3 byte ‘header storage’ location. It will be
stored with 3 bits in the receiver’s address location,
and the remaining 8 bits in the transmitter’s address
location. For this example, we have requested that all
messages created by transmitter ‘10’ be printed, so all
11 bit CAN IDs that end in 10 will be displayed (ie all
that look like ‘x10’).

The other monitoring command that is very useful
is the AT MR command, which looks for specific
addresses in the middle byte of the header. Using this
command, you can look for all messages being sent to
a particular address. For example, to use it to look for
messages being sent to the ECU with address 10,
simply send:

>AT MR 10

and all messages that contain 10 in the second byte of
the header will be displayed.

Using this command with the 11 bit CAN systems
will again need further explanation. It may be helpful to
first picture the hex number ‘10’ in the above example
as the binary number ‘0001 0000’. Recall from above
that 11 bit CAN IDs are actually stored as the least
significant 11 bits in the 3 byte ‘header storage’
locations, and only 3 bits are actually stored in the
middle byte (receiver’s address) position. When
comparing the received CAN ID to the address you
provide with the MR command then, only the right-
most 3 bits of your MR address are considered and
the other 5 bits are ignored. In this example, the
AT MR 10 effectively becomes AT MR 0 for 11 bit
CAN systems, and all messages that begin with ‘0’ as
the first digit will actually be displayed.

In order to use the AT MR command with CAN 11
bit identifiers, you should always try to use the format
‘AT MR 0x’, where ‘x’ is the digit that you want the
identifiers to begin with. To look for all 2xx’s, use the
command ‘AT MR 02’, and to see all of the 7xx’s, you
should use ‘AT MR 07’.

ELM327

27 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

CAN Messages and Filtering

The ELM327 monitoring commands (AT MA, MR
and MT) usually work very well with the ‘slower’
protocols – J1850, ISO 9141 and ISO 14230. The
CAN systems are a different story, however, as they
often have an order of magnitude more information
passing over them. The relatively small 256 byte buffer
that the ELM327 uses for sending can quickly fill up
when data is arriving at 500 Kbps and leaving at 38.4
Kbps.

To help reduce the amount of information seen by
the ELM327, the internal CAN module has a ‘filter’ that
can be used to pass only messages with specific ID
bits. A range of values can be passed when the filter is
used with what is called a ‘mask’ to say which bits are
relevant.

As an example, consider an application where you
are trying to monitor for 29 bit CAN diagnostic
messages, exactly like the ELM327 does. By
definition, these messages will be sent to the scan tool
at address F1. From ISO 15765-4, you know then that
the ID portion of the reply must be of the form:

18 DA F1 xx

where xx is the address of the module that is sending
the message. To use the filter, then, enter what you
have into it, putting anything in for the unknown portion
(you will see why in a moment). The command to set
the CAN filter is AT CF…

>AT CF 18 DA F1 00

How, you ask, do you tell the ELM327 to ignore
those last two 0’s? You do that with the mask. The
mask is a set of bits that tell the ELM327 which bits in
the filter are relevant. If the mask bit is 1, that filter bit
is relevant, and is required to match. If it is 0, then that
filter bit will be ignored. All bits in the above message
are relevant, except those of the last two digits. To set
the mask for this example then, you would need to use
the CAN Mask command, as follows:

>AT CM 1F FF FF 00

If desired, you can convert the hexadecimal to
binary to see what has been done.

The 11 bit CAN IDs are treated in the same
manner. Recall that they are stored internally in the
right-most 11 bits of the locations used for 29 bit CAN,
which must be considered when creating a filter or

28 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

mask. As an example, assume that we wish to display
all messages that have a 6 as the first digit of the 11
bit ID. We need to set a filter to look for 6 in that digit:

>AT CF 00 00 06 00

The 11 bit ID is stored in the last three locations,
so the 6 would appear where it is shown. Now, to
make that digit relevant, we create the mask:

>AT CM 00 00 0F 00

The system only uses the 11 right-most bits in this
case, so we can be lazy and enter the F as shown (the
first bit of the F will be ignored, and it will be treated as
if we had entered a 7).

Clearly, this can be quite cumbersome if using 11
bit CAN systems routinely. To help with that, the
ELM327 offers some shorter versions of the CF and
CM commands. To use them for the example above,
you need only enter three digit arguments:

>AT CF 600

and

>AT CM F00

As for the full eight digit versions, only the 11 least
significant (right-most) digits are actually used, so you
do not need to take special care with the first bit.

With a little practice, these commands are fairly
easy to master. Initially, try entering the filter and mask
values, then use a command such as AT MA to see
what the results are. The ELM327 knows that you are
trying to filter, and combines the effects of both
commands (it will do that for MR and MT as well). The
MA, MR and MT commands all have the extra benefit
that while they are in effect, the ELM327 will remain
quiet, not sending acknowledgement or error signals,
so anything you do while monitoring should not disrupt
other devices that are on the bus.

Note that if a filter has been set, it will be used for
all CAN messages. Setting filters and masks may
cause standard OBD requests to be ignored though,
and you may begin seeing “NO DATA” responses. If
this happens, and you are unsure of why, you may
want to reset everything to their default values (AT D)
and start over.

29 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Multiline Responses

There are occasions when a vehicle must respond
with more information than one ‘message’ is able to
show. In these cases, it responds with several lines
which must be assembled into one complete message.

One example of this is a request for the serial
number of the vehicle (mode 09, PID 02). This is often
a multiline reply that needs to be joined. In these
situations, you must take care to ensure that all of the
reply has been received and it is in the correct order
before assembling the message. The actual response
usually has a byte that shows the sequence of the
data, to help with this. Here is one example for a
typical SAE J1850 vehicle:

>0902
49 02 01 00 00 00 31
49 02 02 44 34 47 50
49 02 03 30 30 52 35
49 02 04 35 42 31 32
49 02 05 33 34 35 36

Note that all OBD compliant vehicles do not
necessarily provide this information. Many older ones
do not, but as a rule, the newer ones do. If your
vehicle does not support this parameter, you will only
see a “NO DATA” response.

The first two bytes (49 and 02) on each line of the
above response do not show any vehicle information.
They only show that this is a response to an 09 02
request. The next byte on each line shows the order in
which the data is to be assembled. Assembling the
remainder of the data in that order, and ignoring the
first few 00’s gives:

31 44 34 47 50 30 30 52 35 35 42 31 32
33 34 35 36

Using an ASCII table to convert these hex digits
gives the following serial number for the vehicle:

1 D 4 G P 0 0 R 5 5 B 1 2 3 4 5 6

CAN systems will display this information in a
somewhat different fashion. Here is a typical response
from a CAN vehicle:

>0902
014
0: 49 02 01 31 44 34
1: 47 50 30 30 52 35 35
2: 42 31 32 33 34 35 36

CAN Formatting has been left on (the default),

making the reading of the data easier. With formatting
on, the sequence numbers are shown with a colon (‘:’)
after each, so that they clearly stand out (0:, 1:, etc.).
CAN systems add this hex digit (it goes from 0 to F
then repeats), to aid in reassembling the data, just as
the J1850 vehicle did.

The first line of this response says that there are
014 bytes of information to follow. That is 14 in
hexadecimal, or 20 in decimal terms, which agrees
with the 6 + 7 + 7 bytes shown on the three lines.
Serial numbers are generally 17 digits long however,
so how do we assemble the number from 20 digits?

The second line shown begins with the familiar 49
02, as this is a response to an 09 02 request. Clearly
they are not part of the serial number. CAN will
occasionally add a third byte to the response which we
see next (‘01’) showing the number of data items in the
response (the vehicle can only have one VIN, so the
response says there is only one data item). That third
byte can be ignored, so this leaves 17 data bytes
which are the serial number (purposely chosen to be
identical to the those of the previous example). All that
is needed is a conversion to ASCII, in order to read
them, exactly as before.

The following shows an example of a different type
of multiline response that can occur when two or more
ECUs respond to one request. Here is a typical
response to an 01 00 request:

>01 00
41 00 BE 3E B8 11
41 00 80 10 80 00

This is difficult to decipher without knowing a little
more information. We need to turn the headers on to
actually see ‘who’ is doing the talking:

>AT H1
OK

>01 00
48 6B 10 41 00 BE 3E B8 11 FA
48 6B 18 41 00 80 10 80 00 C0

Now, if you analyze the header, you can see that
the third byte shows ECU 10 (the engine controller)
and ECU 18 (the transmission) are both responding
with a reply that is valid for them. This type of
response occurs often, and you should be prepared for
it.

A final example shows how similar messages
might occasionally be ‘mixed up’ in a CAN system. We

30 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Multiline Responses (Cont’d)

ask the vehicle for the Calibration ID (09 04) and are
presented with the following response:

>09 04
013
0: 49 04 01 35 36 30
1: 32 38 39 34 39 41 43
013
0: 49 04 01 35 36 30
2: 00 00 00 00 00 00 31
1: 32 38 39 35 34 41 43
2: 00 00 00 00 00 00 00

which is quite confusing. The first group (the 013, 0:, 1:
group) seems to make some sense, but the following
group is very confusing. Why are there two segment
twos? Which ECU do these belong to? The only way
to tell is to again turn on the headers, and repeat your
request:

>AT H1
OK

>09 04
7E8 10 13 49 04 01 35 36 30
7E9 10 13 49 04 01 35 36 30
7E8 21 32 38 39 34 39 41 43
7E8 22 00 00 00 00 00 00 31
7E9 21 32 38 39 35 34 41 43
7E9 22 00 00 00 00 00 00 00

This time, the order is a little different (this is a real
example), but there are still 6 lines of responses just
as before.

Looking at the first digits of these responses, you
can see that some begin with 7E8, and some begin
with 7E9. This is the special CAN IDs representing
ECU#1 and ECU#2, respectively. Grouping the
responses from the two ECUs gives:

7E8 10 13 49 04 01 35 36 30
7E8 21 32 38 39 34 39 41 43
7E8 22 00 00 00 00 00 00 31

and
7E9 10 13 49 04 01 35 36 30
7E9 21 32 38 39 35 34 41 43
7E9 22 00 00 00 00 00 00 00

From these, the messages can be assembled, in
their proper order. To do this, look at the byte following

the CAN ID - it is what is known as the PCI byte, and
is used to tell what type of data follows. In this case,
the PCI byte begins with either a 1 (for a ‘First Frame’
message), or a 2 (for the ‘Consecutive Frames’). The
second half of the PCI byte shows the order in which
the information is to be assembled (ie. the segment
number). In this case, the segment numbers are
already in order, but if they had not been, it would
have been necessary to rearrange the messages to
place them in order.

Each OBD standard has minor peculiarities.
Hopefully this will helped you with some of the more
difficult ones. If you are still having trouble, we urge
you to purchase the relevant standard, and study it.

Restoring Order

There may be times when it seems the ELM327 is
out of control, and you will need to know how to
restore order. Before we continue to discuss modifying
too many parameters, this seems to be a good point to
discuss how to ‘get back to the start’. Perhaps you
have told the ELM327 to monitor data, and there are
screens and screens of data flying by. Perhaps the IC
is now responding with ‘NO DATA’ when it did work
previously. This is when a few tips may help.

The ELM327 can always be interrupted from a
task by a single keystroke from the keyboard. As part
of its normal operation, checks are made for received
characters, and if found the IC will stop what it is doing
at the next opportunity. Often this means that it will
continue to send the information on the current line,
then stop, print a prompt character, and wait for your
input. The stopping may not always seem immediate if
the RS232 send buffer is almost full though - you will
not actually see the prompt character until the buffer
has emptied, and your terminal program has finished
printing what it has received.

There are times when the problems seem more
serious and you don’t remember just what you did to
make them so bad. Perhaps you have ‘adjusted’ some
of the timers, then experimented with the CAN filter, or
perhaps tried to see what happens if the header bytes
were changed. All of these can be reset by sending
the ‘set to Defaults’ AT Command:

>AT D
OK

This will often be sufficient to restore order, but it
can occasionally bring unexpected results. One such
surprise will occur if you are connected to a vehicle
using one protocol, but the saved default protocol is a
different one. In this case, the ELM327 will close the
current session and then set the protocol to the default
one, exactly as instructed.

If the AT D does not bring the expected results, it
may be necessary to do something more drastic - like
resetting the entire IC. There are two ways that this
can be performed with the ELM327. One way is the full
reset, that acts exactly as if the power were cycled off
an then on. It uses the same command as with the our
other interface circuits:

>AT Z

It takes approximately one second for the IC to

ELM327

31 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

perform this reset, initializing everything and then
testing the four status LEDs in sequence. A much
quicker option is available with the ELM327 however, if
the ’lamp test’ is not required - the ‘Warm Start’
command:

>AT WS

This new command performs a software reset,
restoring exactly the same items as the AT Z does, but
it omits the LED test, so is considerably faster.

Any of the above methods can be effective in
restoring order while experimenting. Keep them in
mind so that you know what to do when you get into
trouble.

CAN Message Formats

The ISO 15765-4 (CAN) standard defines several
message types that are to be used with diagnostic
systems. Currently, there are four main ones that may
be used:

SF - the Single Frame

FF - the First Frame (of a multiframe message)

CF - the Consecutive Frame (“ “)

FC - the Flow Control frame

The Single Frame message contains storage for
up to seven data bytes and what is known as a PCI
(Protocol Control Information) byte. The PCI byte is
always the first byte of them all, and tells how many
data bytes are to follow. If the CAN Auto Formatting
option is on (CAF1) then the ELM327 will create this
byte for you when sending, and remove it for you when
receiving. (If the headers are enabled, you will always
see it.)

 If you turn the Auto Formatting off (with CAF0), it
is expected that you will provide all of the data bytes to
be sent. For diagnostics systems, this means the PCI
byte and the data bytes. The ELM327 will not modify
your data in any way, except to add extra padding
bytes for you, to ensure that you always send a total of
eight data bytes (the data length is not adjustable with
this version of the ELM327). You do not need to set
the Allow Long (AT AL) option in order to do this, as
the IC overrides it for you.

A First Frame message is used to say that a
multiframe message is about to be sent, and tells the
receiver just how many data bytes to expect. The
length descripter is limited to 12 bits, so a maximum of
4095 byes can be received at once using this method.

Consecutive Frame messages are sent after the
First Frame message to provide the remainder of the
data. Each Consecutive Frame message includes a
single hex digit ‘sequence number’ that is used to help
with reassembling the data. It is expected that if a
message were corrupted and resent, it could be out of
order by a few packets, but not by more than 16, so
the single digit is normally more than adequate. As
seen previously, the serial number for a vehicle is
often a multiframe response:

>0902
014
0: 49 02 01 31 44 34
1: 47 50 30 30 52 35 35

32 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

2: 42 31 32 33 34 35 36

In this example, the line that begins with 0: is the
First Frame message. The length (014) was actually
extracted from the message by the ELM327 and
printed on the separate line as shown. Following the
First Frame line are two Consecutive Frames as
shown (1: and 2:). To learn more details of the exact
formatting, you may want to send a request such as
the one above, then repeat the same request with the
headers enabled (AT H1). This will show the PCI bytes
that are actually used to send these components of the
total message.

The Flow Control frame is one that you do not
normally have to deal with. When a First Frame
message is sent as part of a reply, the ELM327 must
tell the sender some technical things (such as how
long to delay between Consecutive Frames, etc.) and
does so by replying immediately with a Flow Control
message. These are predefined by the ISO 15765-4
standard, so can be automatically inserted for you. If
you wish to generate custom Flow Control messages,
then refer to the next section.

If a Flow Control frame is detected while
monitoring, the line will be displayed with ‘FC: ’ before
the data, to help you with decoding of the information.

There is a final type of message that is
occasionally reported, but is not supported by the
diagnostics standard. The (Bosch) CAN standard
allows for the transmission of a data request without
sending any data in the requesting message. To
ensure that the message is seen as such, the sender
also sets a special flag in the message - the RTR bit,
which is seen at each receiver. The ELM327 always
looks for this flag, or for zero data bytes, and may
report to you that an RTR was detected while
monitoring. This is shown by the characters RTR
where data would normally appear, but only if the CAN
Auto Formatting is off, or headers are enabled. Often,
when monitoring a CAN system with an incorrect baud
rate chosen, RTRs may be seen.

Note that the CAN system is quite robust with
several error detecting methods in place, so that
during normal data transmission you will rarely see
any errors. When monitoring buses however, you may
well see errors (especially if the ELM327 is set to an
incorrect baud rate). As a diagnostic aid, when errors
do occur, the ELM327 will print all bytes (no matter
what CAF, etc., is set to), followed by the message
‘<RX ERROR’.

ELM327

ELM327

Altering Flow Control Messages

33 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

ISO 15765-4 (CAN) provides for only eight data
bytes per frame of data. Of course, there are many
cases where the data which needs to be sent is longer
that 8 bytes and CAN has made provision for this,
allowing data to be separated into segments, then
recombined at the receiver.

To send one of these multi-line messages, the
transmitter in a CAN system will send a “First Frame”
message, and then wait for a reply from the receiver.
This reply, called a “Flow Control” message contains
information concerning acceptable message timing,
etc. and is required to be sent before the transmitter
will send any more data. For ISO 15765-4, the type of
response is well defined, and never changes. The
ELM327 will automatically send this ISO 15765-4 Flow
Control response for you as long as the CAN Flow
Control option is enabled (CFC1), which it is by
default.

Several users have requested that we provide
more flexibility over the data sent in the Flow Control
message, and as of v1.1, we have provided a means
to do this. In order to change how the ELM327
responds when it needs to send a Flow Control
message, you need to change Flow Control ‘modes’.

The default Flow Control mode is number ‘0’. At
any time while you are experimenting, if you should
wish to restore the automatic Flow Control responses
(for ISO 15765-4), simply send:

>AT FC SM 0
OK

which will immediately restore the responses to their
default settings.

Mode 1 has been provided for those that need
complete control over their Flow Control messages. To
use it, simply define the CAN ID (header) and data
bytes that you require be sent in response to a First
Frame message. If you try to set the mode before
defining these values, you will get an error:

>AT FC SM 1
?

You must set the headers and data first:

>AT FC SH 7E8
OK

>AT FC SD 00 11 22

OK

then you can set the mode:

>AT FC SM 1
OK

From this point on, every First Frame message
received will be responded to with your custom
message.

The final mode currently supported allows the user
to set the data bytes which are to be sent, but not the
ID bits. The ID bits (header bytes) in mode 2 are set to
those which were received in the First Frame
message, without change. To use this mode, first
define your data bytes, then activate the mode:

>AT FC SD 00 11 22
OK

>AT FC SM 2
OK

For most people, there will be little need to
manipulate these “Flow Control” messages, as the
defaults are designed to work with the CAN OBD
standards. If you wish to experiment, these special AT
commands offer that control for you.

Figure 7 summarizes the currently supported
modes:

Figure 7. Flow Control Mode Numbers

ELM327
Provides

FC
Mode

0

1

2

ID Bits
Data Bytes

User
Provides

ID Bits Data Bytes

-

-

ID Bits
Data Bytes

ELM327

34 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Programmable Parameters

The ELM327 contains several programmable
memory locations that retain their data even after
power is turned off. Every time the IC is powered up,
these locations can be read and used to set default
settings such as whether to display the headers, or
how often to send ‘wakeup’ messages.

The settings, or parameters, can be altered by the
user at any time using a few simple commands. These
Programmable Parameter commands are used exactly
as any other AT Command is used, however each one
requires a two-step process to become active. This
provides some security against random inputs possibly
making changes.

The following table lists the currently supported
Programmable Parameters in this version of the
ELM327. As an example of how to use a
Programmable Parameter, consider the first one (the
printing of headers). If you are constantly powering
your ELM327 and then using AT H1 to turn the
headers on, you may want to change its’ default
setting. To do this, simply change the value of PP 01:

>AT PP 01 SV 00
OK

This has changed the value associated with
PP 01, but has not enabled it. To do so, type:

>AT PP 01 ON
OK

If you are unsure of the current state of one of the
programmable parameters, simply use the PPS
command to see a summary of all of them. For the
above example, the following might be shown:

>AT PPS
00:FF F 01:00 N 02:FF F 03:FF F
04:FF F 05:FF F 06:FF F 07:FF F
08:FF F 09:FF F 0A:FF F 0B:FF F
0C:FF F 0D:FF F 0E:FF F 0F:FF F
10:FF F 11:FF F 12:FF F 13:FF F
14:FF F 15:FF F 16:FF F 17:FF F
18:FF F 19:FF F 1A:FF F 1B:FF F
1C:FF F 1D:FF F 1E:FF F 1F:FF F
20:FF F 21:FF F 22:FF F 23:FF F
24:FF F 25:FF F 26:FF F 27:FF F
28:FF F 29:FF F 2A:FF F 2B:FF F
2C:FF F 2D:FF F 2E:FF F 2F:FF F

You can see that PP 01 now shows a value of 00,
and it is enabled (oN). Since its type is ‘D’, it will not
actually take effect until the AT D command is issued,
or the ELM327 is reset.

A final example shows how you might change the
CAN filler byte. Some systems use ‘AA’ as the value to
put into unused CAN bytes, while the ELM327 uses
‘00’ by default. To change the ELM327’s behaviour,
simply change PP 26:

>AT PP 26 SV AA
OK

>AT PP 26 ON
OK

 Again, PP 26 is of type is ‘D’, so the above
change will not actually take effect until the AT D
command is issued, or the ELM327 is reset.

One word of caution while experimenting - most
software expects the ELM327 to respond in certain
ways, and if you change that, you may ‘break’ that
software. For example, you can turn the CAN data
length code on with PP 29. Most software will expect
the ELM327 headers to not have a single digit where
the DLC code is displayed however, and so you will
likely have problems with commercial software if you
turn the DLC on. Another example is changing the
Carriage Return character. This is the only character
recognized by the ELM327 to initiate action after a
command is entered. If you should change its’ value,
software will surely have problems, but even worse -
forgetting what you set it to might make the IC useless.
Use great caution when experimenting with this one.

The Programmable Parameters provide a means
for people to customize the behaviour of the ELM327
to their own application. They do, however, provide a
means to ‘make a mess’. Study each change you
make, and be sure that you understand what you will
be doing. If you get in too deeply, don’t forget the all
off command:

>AT PP FF OFF

35 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

ELM327

The following is a summary of the currently implemented Programmable Parameters:

Number Description Values Default Type

01 Printing of header bytes (AT H1 setting) FF
(OFF)

D

02 Allow long messages (AT AL setting) 00 = ON
FF = OFF

FF
(OFF)

D

03 NO DATA (AT ST) time
setting = value x 4.096 msec

00 to FF 32
(205 msec)

D

09 Character echo (AT E1 setting) 00
(ON)

R

0A Linefeed Character 0A

0D Carriage Return Character

10 J1850 voltage settling time
setting = value x 4.096 msec

I

11 J1850 Break Signal monitor
(reports BUS ERROR if break signal duration limits are exceeded)

00
(ON)

D

13 Auto search time delay between protocols 1 & 2
setting = value x 4.096 msec

I

16 ISO baud rate (AT IB setting) 00 = 96
FF = 10

FF
(10.4K)

R

ISO wakeup message rate (AT SW setting)
setting = value x 20.48 msec

D

18 I

24 CAN auto formatting (AT CAF1 setting) D

25 D

26 CAN filler byte 00 D

17

29 Print the CAN data length code (DLC) when printing header bytes FF
(OFF)

I

00 to FF R

R00 to FF 0D

00 to FF 0D
(53 msec)

00 to FF

Auto search time delay between protocols 4 & 5
setting = value x 4.096 msec

00
(no delay)

00 to FF

CAN auto flow control (AT CFC1 setting)

00 to FF

00 = ON
FF = OFF

92
(2.99 sec)

00 to FF

00 = ON
FF = OFF

00 = ON
FF = OFF

00 = ON
FF = OFF

00 = ON
FF = OFF

00
(ON)

00
(ON)

00 = ON
FF = OFF

00
(no delay)

Notes: 1. The system “Default” values can not be seen with an AT PPS command. All of the system “Default” values
are stored internally and are not visible to the user.

2. The “Type” determines when the Programmable Parameter takes effect. For “I”, the effect is immediate, for
“R”, it will only become apparent after a Reset (AT Z, AT WS or power off/on). The “D” types take effect after
Defaults are restored (AT D, AT Z, AT WS or power off/on).

Programmable Parameters (Cont’d)

Error Messages

BUFFER FULL

The ELM327 provides a 256 byte internal RS232
transmit buffer so that OBD messages can be received
quickly, stored, and sent to the computer or PDA at a
more constant rate. Occasionally (particularly with
CAN systems) the buffer will fill at a faster rate than it
is being ‘emptied.’ Eventually it may become full, and
no more data can be stored (it is lost).

If you are receiving BUFFER FULL messages,
and are using a 9600 baud data rate, give serious
consideration to changing your data rate to 38400
baud. If you still receive BUFFER FULL messages
after that, consider some of the filtering options (the
MR, MT, CF and CM AT Commands).

BUS BUSY

The ELM327 tried to send the mode command or
initialize the bus, but detected too much activity to
insert a message. This could be because the bus was
in fact busy, but it is most often due a wiring problem
that is giving a continuously active input. If this is an
initial trial with your ELM327 circuit, check all of the
voltage levels at the offending OBD input – this error is
very likely due to a wiring problem.

BUS ERROR

A generic problem has occured. This is most often
from an invalid signal being detected (a pulse that is
longer than a Break signal, etc.) on the bus, but could
be from a wiring error. Note that some vehicles may
generate long pulses as part of their startup process,
so you may see this message as part of a normal
vehicle startup while ‘monitoring all’.

CAN ERROR

The CAN system had difficulty initializing, sending,
or receiving. Often this is simply from not being
connected to a CAN system when you attempt to send
a message, but it may be because you have set the

system to an incorrect protocol, or to a rate that does
not match the actual data rate. As with BUS ERRORs,
the CAN ERROR might also be the result of a wiring
problem, so if this is the first time using your ELM327
circuit, review all of your CAN interface circuitry before
proceeding.

FB ERROR

When an OBD output is energized, a check is
always made to ensure that the signal also appears at
the respective input. If there is a problem, and no
active input is detected, the IC turns the output off and
declares that there was a problem with the FeedBack
(FB) of the signal. If this is an initial trial with your
ELM327, this is almost certainly a wiring problem.
Check your wiring before proceeding.

DATA ERROR

There was a response from the vehicle, but the
information was incorrect or could not be recovered.

<DATA ERROR

There was an error in the line that this points to,
either from an incorrect checksum or a problem with
the format of the message (the ELM327 still shows
you what it received). There could have been a noise
burst which interfered, or possibly a circuit problem.
Try re-sending the command again.

NO DATA

The IC waited for the period of time that was set
by AT ST, but detected no response from the vehicle.
It may be that the vehicle had no data to offer for that
particular PID, that the mode requested was not
supported, that the vehicle was attending to higher
priority issues, or in the case of the CAN systems, the
filter may have been set to ignore the response, even
though one was sent. If you are certain that there
should have been a response, try adjusting the AT ST

When hardware or data problems occur, the ELM327
will respond with one of the following short messages.
Some of the messages are suppressed during an
automatic search for a protocol, and are only visible if
not in the “Auto” mode. Here is a brief description of
each:

36 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

ELM327

37 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

ELM327

time (to be sure that you have allowed sufficient time
to obtain a response), or restoring the CAN filter to its
default setting.

<RX ERROR

An error was detected in the received CAN data.
This will usually only occur if monitoring a CAN bus, if
set for an incorrect baud rate. Try a different protocol.

UNABLE TO CONNECT

The ELM327 has tried all of the available
protocols, and could not detect a compatible one. This
could be because your vehicle uses an unsupported
protocol, or could be as simple as forgetting to turn the
ignition key on. Check all of your connections, and the
ignition, then try the command again.

?

This is the standard response for a misunderstood
command received on the RS232 input. Usually it is
due to a typing mistake.

Error Messages (Cont’d)

Figure 8. The J1962 Vehicle Connector

81

9 16

Example Applications

The SAE J1962 standard dictates that all OBD
compliant vehicles must provide a standard connector
near the driver’s seat, the shape and pinout of which is
shown in Figure 8 below. The circuitry described here
can be used to connect to this J1962 plug without
modification to your vehicle.

The male J1962 connector required to mate with a

vehicle’s connector may be difficult to obtain in some
locations, and you could be tempted to improvise by
making your own connections to the back of your
vehicle’s connector. If doing so, we recommend that
you do nothing that would compromise the integrity of
your vehicle’s OBD network. The use of any connector
which could easily short pins (such as an RJ11 type
telephone connector) is definitely not recommended.

The circuit of Figure 9 shows how the ELM327
might typically be used. Circuit power is obtained from
the vehicle (via OBD pins 16 and 5) and, after a
protecting diode and some capacitive filtering, is
presented to a five volt regulator. (Note that a few
vehicles have been reported to not have a pin 5 – on
these you will use pin 4 instead of pin 5.) The regulator
powers several points in the circuit as well as an LED
(for visual confirmation that power is present). We
have shown a 78L05 for the regulator as that limits the
current available to about 100mA which is a safe value
for experimenting. The CAN interface is a low
impedance circuit however, and if doing sustained
transmissions on CAN, this type of regulator may shut
down on over-temperature. Should you experience this
problem, you may want to consider using a 1 Amp
version of the regulator.

Shown in the top left corner is the CAN interface
circuitry. We do not advise making your own interface
using discrete components - CAN buses may have a
lot of critical information on them, and you can easily
do more harm than good if you fail. It is strongly
recommended that you use a commercial transceiver
chip as shown. The Microchip MCP2551 is used in our
circuit, but most major manufacturers produce CAN

transceiver ICs - look at Philips (82C251), Texas
Instruments (SN65LBC031), and Linear Technology
(LT1796), to name a few. Be sure to pay attention to
the voltage limits - depending on the application, you
may have to tolerate 24V, not just 12V.

The next interface shown is for the ISO 9141 and
ISO 14230 connections. We provide two output lines,
as required by the standards, but depending on your
vehicle, you may not need to use the ISO-L output.
(Many vehicles do not require this signal for initiation,
but some do, so it is shown here.) If your vehicle does
not require the L line, simply leave pin 22 unused.

The ELM327 controls both of the ISO outputs
through NPN transistors Q6 and Q7 as shown. These
transistors have 510Ω pullup resistors connected to
their collectors, as the standard requires. We are often
asked about substitutes for these resistors - if you
need to substitute, you can either go up to 560Ω or
possibly make 510Ω from two resistors (1/4W 240Ω +
270Ω resistors work well), but we do not recommend
using a lower value as it stresses every device on the
bus. Note that 1/2W resistors should be used as a
short at 13.8V causes about 0.4W dissipation.

Data is received from the K Line of the OBD bus
and connected to pin 12 after being reduced by the
R20/R21 voltage divider shown. Because of the
schmitt trigger input on pin 12, these resistors will give
typical threshold levels of 9.1V (rising) and 4.7V
(falling) providing a large amount of noise immunity,
while also protecting the IC.

The final OBD interface shown is for the two
J1850 standards. The J1850 VPW standard needs a
positive supply of up to 8V while the J1850 PWM
needs 5V, so we have shown a two level supply that
can provide both. This dual voltage supply uses a
317L adjustable regulator as shown, controlled by the
pin 3 output. With the resistor values given, the
selected voltages will be about 7.5V and 5V, which
works well for most vehicles. The two J1850 outputs
are driven by the Q1-Q2 combination for the Bus+,
and Q3 for the Bus-.

The J1850 VPW input uses a resistor divider as
was used for the ISO input. Typical threshold voltages
with the resistors shown will be about 4.2V (rising) and
2.2V (falling). The J1850 PWM input is a little different
in that it must convert a differential input into a single-
ended one for use by the ELM327. In operation, Q4 is
actually used as the difference amplifier. The Q4-D3
series circuit sets a threhold voltage of about 1V, while
R11 limits the current flow and R12 keeps Q4 off when

ELM327

38 of 43ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

39 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

the input is left open-circuited.
Resistor R36 has been added to the circuit of

Figure 9, to help turn transistor Q4 off more rapidly in
certain circumstances. The resistor is generally not
required, as it basically is only needed if you are
connected to a very high capacitance J1850 VPW
system then force the ELM327 to operate in the J1850
PWM mode, and experience false BUS ERRORs. We
show the resistor as an option and leave the choice
whether to install it up to you.

The voltage monitoring circuitry for the AT RV
command is shown in this schematic connected to pin
2 of the ELM327. The two resistors simply divide the
battery voltage to a safe level for the ELM327, and the
capacitor filters out noise. As shipped, the ELM327
expects a resistor divider ratio as shown, and sets
nominal calibration constants assuming that. If your
application needs a different range of values, simply
adjust the resistor values, then perform an AT CV to
calibrate to that (but the ELM327 can not display more
than 99.9V).

A very basic RS232 interface is shown connected
to pins 17 and 18 of the ELM327. This circuit ‘steals’
power from the host computer in order to provide a full
swing of the RS232 voltages without the need for a
negative supply. The RS232 pin connections shown
are for a standard 9 pin connector. If you are using a
25 pin one, you will need to compensate for the
differences. The polarity of the ELM327’s RS232 pins
is such that they are compatible with standard
interface ICs (MAX232, etc.), so if you should prefer
such an interface, you can remove all of the discrete
components shown and use one of those.

The four LEDs shown (on pins 25 to 28) have
been provided as a visual means of confirming circuit
activity. They are not essential, but it is nice to see the
visual feedback when experimenting.

Finally, the crystal shown connected between pins
9 and 10 is a standard 4.000MHz microprocessor type
crystal. The 27pF crystal loading capacitors shown are
typical only, and you may have to select other values
depending on what is specified for the crystal you
obtain. The crystal frequency is critical to circuit
operation and must not be altered.

We often receive requests for parts lists to
accompany our Example Applications circuits. Since
this circuit is more complex than most, we have
named/numbered all of the components and provided
a summary parts list (see Figure 10). Note that these
are only suggestions for parts. If you prefer another

LED colour, or have a different general purpose
transistor on hand, etc., by all means make the
change. A quick tip for those having trouble finding a
0.3” wide socket for the ELM327: many of the standard
14 pin sockets can be placed end-to-end to form one
0.3” wide 28 pin socket.

The ELM327 was built to be a multi-protocol
device that automatically searches for a valid protocol,
but there is no reason that it can not be used in a
circuit that supports only one protocol. Figure 11
shows an example of how the ELM327 might be used
in a ‘J1850 VPW only’ circuit.

The differences between Figures 9 and 11 should
be apparent. Unused protocols have simply had their
outputs ignored (left open circuit), and their inputs
wired to a convenient logic level. Note that these are
CMOS inputs, so must never be left floating.

The circuit maintains the status LEDs, and the
J1850 Bus+ circuitry, but the majority of the rest has
been eliminated. The voltage switching circuitry has
been reduced to a single 8V regulator as well, since
there will be no need to switch to 5V. Note that pin 3
has been intentionally left open-circuited as it is not
required by the voltage regulator.

The first time that this circuit is used, it will likely be
set to protocol 0 – the default ‘Automatic search’ mode
of operation (as shipped from the factory). When you
connect it to the J1850 VPW vehicle, it will likely first
try a J1850 PWM (protocol 1) connection, fail, and
then proceed to try J1850 VPW. If the memory is
enabled (as shown), J1850 VPW will then become the
new default. This will work well for most applications,
but if the circuit is used on a vehicle with the key off,
for example, then it will again go searching for a new
protocol.

In general, you do not want this to happen every
time. It may be only a minor inconvenience to have to
wait while the ELM327 determines that it is “UNABLE
TO CONNECT”, but why go through it if you do not
have to? If you know that you are using the circuit in a
J1850 VPW only application (protocol 2) then you
should issue the command AT SP 2 the very first time
that the circuit is powered. From that point on, it will
remain in protocol 2, whether it fails to make a
connection or not.

This has provided two examples of how the
ELM327 integrated circuit might be used. Hopefully
this has been enough to get you started on your way
to many more…

Example Applications (Cont’d)

40 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Figure 9.
An OBD to RS232 Interpreter

2 (RxD)

X1
4.00MHz

C4
27pF

RS232
Interface

(DB9F)

OBD
Interface

R27-30
470Ω

+5V

C3
27pF

+5V

+5V

+5V

3 (TxD)

5 (SG)

1 (DCD)

4 (DTR)

6 (DSR)

7 (RTS)

8 (CTS)

+5V

317L

+12V

ELM327
pin 14

R15
4.7KΩ

to
R15

+5V

(J1962)

J1850 Bus +
2

J1850 Bus -
10

Q5

to
R21

n.c.

+5V

+5V

CAN-H
6

CAN-L
14

1 2 3 4

5678

MCP2551
PWR

Vbat Vbat

ISO-L
15

ISO-K
7

ELM327
pin 12

Vbat

327

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1516171819202122232425262728

U1

Battery
Positive

16 78L05

Vbat +12V

Signal
Ground

5

+5V

R1
470Ω

C6
0.1µF

C1
0.1µF

D1

R26
4.7KΩ

R24
10KΩ

R25
10KΩ D4D5

C5

0.1µF

R23
4.7KΩ

R22
10KΩ

Q8

Q9

L1-L4

L5R32
100Ω

R33
100Ω

C8
560pF

C9
560pF

R31
4.7KΩ

C7
0.1µF

R19
510Ω

R17
510Ω

R16 2.2KΩ

R18 2.2KΩ

R20
47KΩ R21

22KΩ

R34
47KΩ

R35
10KΩ C2

0.1µF

R5
240Ω R3 470Ω

R4
470Ω

R2
470Ω

R8
10KΩ

R7
4.7KΩ Q1

Q2
R6
4.7KΩ R10

22KΩ

R9 10KΩ

R11
10KΩ

R12
100KΩD3

Q4

R13
10KΩ

R14
4.7KΩ

Q3

D2

Q6

Q7

U2

U3

U4

R36*
22KΩ

*see text re R36

A common question we receive with our OBD
interpreters is “Can I connect the ELM32x circuit
directly to my own circuit, or must I use the RS232
interface shown?” Certainly you may connect directly
to our ICs - you do not need to use an RS232
interface.

The ELM327 does not use an inverted RS232 Rx
input (as was the case with the ELM320, ELM322 and
ELM323), so interfacing without RS232 levels is now
even simpler. If you have a microprocessor that uses
the same 5V supply as the ELM327, and has an
internal UART, all you will generally need do is
connect your processor’s transmit output to the
ELM327’s receive input, and then your receive input to
the ELM327’s transmit output. Communications should
work fine with this connection (and a correct baud rate
setting). The ELM327 is a CMOS device that uses
industry standard levels for all inputs and outputs, so is
easily interfaced to almost any logic circuit.

The ELM327 has a new hand-shaking feature that
may be very useful for some interfaces. There is a

41 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

request to send (RTS) input, and a Busy output that
can be used to interrupt the ELM327, and to see when
it is ready to receive an input, respectively. To use
them, set one of your port pins to normally provide a
high output, and connect it to the RTS input. Use
another port pin as an input to monitor the ELM327
Busy output. When you want to send a command,
simply check the Busy output first. If it is at a logic high
level, then bring your RTS line low and wait for the
Busy line to go low (you might want to consider using
an edge triggered interrupt for this, if one is available).
When Busy does go low, restore your RTS line to a
high level, and then send your command to the
ELM327. No need to worry about the ELM327
becoming busy again after you raise the RTS line at
this point - once Busy goes low, the ELM327 waits
(indefinitely) for your command.

If you do not use the RTS input on the ELM327,
don’t forget to tie it to a high logic level.

Computer Control

Resistors
R32, R33= 100 Ω
R5 = 240 Ω
R1, R2, R3, R4, R27, R28, R29, R30 = 470 Ω
R17, R19 = 510 Ω 1/2W
R16, R18 = 2.2 KΩ
R6, R7, R14, R15, R23, R26, R31 = 4.7 KΩ
R8, R9, R11, R13, R22, R24, R25, R35 = 10 KΩ
R10, R21, R36 = 22 KΩ
R20, R34 = 47 KΩ
R12 = 100 KΩ

Misc
X1 = 4.000MHz crystal
RS232 Conn = DB9F
IC Socket = 28pin 0.3” (or 2 x 14pin)

Semiconductors
D1 = 1N4001
D2, D3, D4, D5 = 1N4148
L1, L2, L3, L4 = Yellow LED
L5 = Green LED
Q1, Q3, Q5, Q6, Q7, Q9 = 2N3904 (NPN)
Q2, Q4, Q8 = 2N3906 (PNP)
U1 = ELM327
U2 = MCP2551
U3 = 78L05 (5V, 100mA regulator)
U4 = 317L (adj. 100mA regulator)

Capacitors
C1, C2, C5, C6, C7 = 0.1uF 16V
C3, C4 = 27pF
C8, C9 = 560pF

Figure 10. Parts List for Figure 9

Example Applications (Cont’d)

Example Applications (Cont’d)

42 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

Figure 11. An OBD (J1850 VPW) to RS232 Interpreter

2 (RxD)

4.00MHz

27pF

RS232
Interface

(DB9F)

OBD
Interface

4 x
470Ω

+5V

27pF

+5V

+5V

+5V

3 (TxD)

5 (SG)

1 (DCD)

4 (DTR)

6 (DSR)

7 (RTS)

8 (CTS)

+5V

78L08

+12V

(J1962)

J1850 Bus +
2

327

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1516171819202122232425262728

4.7KΩ

10KΩ

10KΩ

0.1µF

4.7KΩ10KΩ

10KΩ

4.7KΩ

4.7KΩ
22KΩ

10KΩ

PWRBattery
Positive

16 78L05

Vbat +12V

Signal
Ground

5

+5V

470Ω
0.1µF0.1µF

+5V

Section Index

Description and Features... 1

Pin Descriptions... 2

Ordering Information.. 3

Absolute Maximum Ratings..4

Electrical Characteristics.. 4

Overview.. 5

Communicating with the ELM327...5

AT Commands... 6

AT Command Summary...14

Reading the Battery Voltage.. 15

OBD Commands.. 16

Talking to the Vehicle... 17

Interpreting Trouble Codes...18

Resetting Trouble Codes..19

Quick Guide for Reading Trouble Codes... 19

Bus Initiation...20

Wakeup Messages...20

Selecting Protocols...21

OBD Message Formats..22

Setting the Headers..24

Monitoring the Bus... 27

CAN Messages and Filtering..28

Multiline Responses... 29

Restoring Order..31

CAN Message Formats.. 32

Altering Flow Control Messages...33

Programmable Parameters.. 34

Error Messages.. 36

Example Applications... 38

Computer Control... 41

43 of 43

ELM327

ELM327DSB Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com

